skip to main content


Title: Digitization and the Future of Natural History Collections
Abstract Natural history collections (NHCs) are the foundation of historical baselines for assessing anthropogenic impacts on biodiversity. Along these lines, the online mobilization of specimens via digitization—the conversion of specimen data into accessible digital content—has greatly expanded the use of NHC collections across a diversity of disciplines. We broaden the current vision of digitization (Digitization 1.0)—whereby specimens are digitized within NHCs—to include new approaches that rely on digitized products rather than the physical specimen (Digitization 2.0). Digitization 2.0 builds on the data, workflows, and infrastructure produced by Digitization 1.0 to create digital-only workflows that facilitate digitization, curation, and data links, thus returning value to physical specimens by creating new layers of annotation, empowering a global community, and developing automated approaches to advance biodiversity discovery and conservation. These efforts will transform large-scale biodiversity assessments to address fundamental questions including those pertaining to critical issues of global change.  more » « less
Award ID(s):
1754584 1757324 1902078 1902064 1802209
NSF-PAR ID:
10164954
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
BioScience
Volume:
70
Issue:
3
ISSN:
0006-3568
Page Range / eLocation ID:
243 to 251
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Over 300 million arthropod specimens are housed in North American natural history collections. These collections represent a “vast hidden treasure trove” of biodiversity −95% of the specimen label data have yet to be transcribed for research, and less than 2% of the specimens have been imaged. Specimen labels contain crucial information to determine species distributions over time and are essential for understanding patterns of ecology and evolution, which will help assess the growing biodiversity crisis driven by global change impacts. Specimen images offer indispensable insight and data for analyses of traits, and ecological and phylogenetic patterns of biodiversity. Here, we review North American arthropod collections using two key metrics, specimen holdings and digitization efforts, to assess the potential for collections to provide needed biodiversity data. We include data from 223 arthropod collections in North America, with an emphasis on the United States. Our specific findings are as follows: (1) The majority of North American natural history collections (88%) and specimens (89%) are located in the United States. Canada has comparable holdings to the United States relative to its estimated biodiversity. Mexico has made the furthest progress in terms of digitization, but its specimen holdings should be increased to reflect the estimated higher Mexican arthropod diversity. The proportion of North American collections that has been digitized, and the number of digital records available per species, are both much lower for arthropods when compared to chordates and plants. (2) The National Science Foundation’s decade-long ADBC program (Advancing Digitization of Biological Collections) has been transformational in promoting arthropod digitization. However, even if this program became permanent, at current rates, by the year 2050 only 38% of the existing arthropod specimens would be digitized, and less than 1% would have associated digital images. (3) The number of specimens in collections has increased by approximately 1% per year over the past 30 years. We propose that this rate of increase is insufficient to provide enough data to address biodiversity research needs, and that arthropod collections should aim to triple their rate of new specimen acquisition. (4) The collections we surveyed in the United States vary broadly in a number of indicators. Collectively, there is depth and breadth, with smaller collections providing regional depth and larger collections providing greater global coverage. (5) Increased coordination across museums is needed for digitization efforts to target taxa for research and conservation goals and address long-term data needs. Two key recommendations emerge: collections should significantly increase both their specimen holdings and their digitization efforts to empower continental and global biodiversity data pipelines, and stimulate downstream research. 
    more » « less
  2. Collections digitization relies increasingly upon computational and data management resources that occasionally exceed the capacity of natural history collections and their managers and curators. Digitization of many tens of thousands of micropaleontological specimen slides, as evidenced by the effort presented here by the Indiana University Paleontology Collection, has been a concerted effort in adherence to the recommended practices of multifaceted aspects of collections management for both physical and digital collections resources. This presentation highlights the contributions of distributed cyberinfrastructure from the National Science Foundation-supported Extreme Science and Engineering Discovery Environment (XSEDE) for web-hosting of collections management system resources and distributed processing of millions of digital images and metadata records of specimens from our collections. The Indiana University Center for Biological Research Collections is currently hosting its instance of the Specify collections management system (CMS) on a virtual server hosted on Jetstream, the cloud service for on-demand computational resources as provisioned by XSEDE. This web-service allows the CMS to be flexibly hosted on the cloud with additional services that can be provisioned on an as-needed basis for generating and integrating digitized collections objects in both web-friendly and digital preservation contexts. On-demand computing resources can be used for the manipulation of digital images for automated file I/O, scripted renaming of files for adherence to file naming conventions, derivative generation, and backup to our local tape archive for digital disaster preparedness and long-term storage. Here, we will present our strategies for facilitating reproducible workflows for general collections digitization of the IUPC nomenclatorial types and figured specimens in addition to the gigapixel resolution photographs of our large collection of microfossils using our GIGAmacro system (e.g., this slide of conodonts). We aim to demonstrate the flexibility and nimbleness of cloud computing resources for replicating this, and other, workflows to enhance the findability, accessibility, interoperability, and reproducibility of the data and metadata contained within our collections. 
    more » « less
  3. As we look to the future of natural history collections and a global integration of biodiversity data, we are reliant on a diverse workforce with the skills necessary to build, grow, and support the data, tools, and resources of the Digital Extended Specimen (DES; Webster 2019, Lendemer et al. 2020, Hardisty 2020). Future “DES Data Curators” – those who will be charged with maintaining resources created through the DES – will require skills and resources beyond what is currently available to most natural history collections staff. In training the workforce to support the DES we have an opportunity to broaden our community and ensure that, through the expansion of biodiversity data, the workforce landscape itself is diverse, equitable, inclusive, and accessible. A fully-implemented DES will provide training that encapsulates capacity building, skills development, unifying protocols and best practices guidance, and cutting-edge technology that also creates inclusive, equitable, and accessible systems, workflows, and communities. As members of the biodiversity community and the current workforce, we can leverage our knowledge and skills to develop innovative training models that: include a range of educational settings and modalities; address the needs of new communities not currently engaged with digital data; from their onset, provide attribution for past and future work and do not perpetuate the legacy of colonial practices and historic inequalities found in many physical natural history collections. Recent reports from the Biodiversity Collections Network (BCoN 2019) and the National Academies of Science, Engineering and Medicine (National Academies of Sciences, Engineering, and Medicine 2020) specifically address workforce needs in support of the DES. To address workforce training and inclusivity within the context of global data integration, the Alliance for Biodiversity Knowledge included a topic on Workforce capacity development and inclusivity in Phase 2 of the consultation on Converging Digital Specimens and Extended Specimens - Towards a global specification for data integration. Across these efforts, several common themes have emerged relative to workforce training and the DES. A call for a community needs assessment: As a community, we have several unknowns related to the current collections workforce and training needs. We would benefit from a baseline assessment of collections professionals to define current job responsibilities, demographics, education and training, incentives, compensation, and benefits. This includes an evaluation of current employment prospects and opportunities. Defined skills and training for the 21st century collections professional: We need to be proactive and define the 21st century workforce skills necessary to support the development and implementation of the DES. When we define the skills and content needs we can create appropriate training opportunities that include scalable materials for capacity building, educational materials that develop relevant skills, unifying protocols across the DES network, and best practices guidance for professionals. Training for data end-users: We need to train data end-users in biodiversity and data science at all levels of formal and informal education from primary and secondary education through the existing workforce. This includes developing training and educational materials, creating data portals, and building analyses that are inclusive, accessible, and engage the appropriate community of science educators, data scientists, and biodiversity researchers. Foster a diverse, equitable, inclusive, and accessible and professional workforce: As the DES develops and new tools and resources emerge, we need to be intentional in our commitment to building tools that are accessible and in assuring that access is equitable. This includes establishing best practices to ensure the community providing and accessing data is inclusive and representative of the diverse global community of potential data providers and users. Upfront, we must acknowledge and address issues of historic inequalities and colonial practices and provide appropriate attribution for past and future work while ensuring legal and regulatory compliance. Efforts must include creating transparent linkages among data and the humans that create the data that drives the DES. In this presentation, we will highlight recommendations for building workforce capacity within the DES that are diverse, inclusive, equitable and accessible, take into account the requirements of the biodiversity science community, and that are flexible to meet the needs of an evolving field. 
    more » « less
  4. Premise

    The digitization of natural history collections includes transcribing specimen label data into standardized formats. Born‐digital specimen data initially gathered in digital formats do not need to be transcribed, enabling their efficient integration into digitized collections. Modernizing field collection methods for born‐digital workflows requires the development of new tools and processes.

    Methods and Results

    collNotes, a mobile application, was developed for Android andiOSto supplement traditional field journals. Designed for efficiency in the field, collNotes avoids redundant data entries and does not require cellular service. collBook, a companion desktop application, refines field notes into database‐ready formats and produces specimen labels.

    Conclusions

    collNotes and collBook can be used in combination as a field‐to‐database solution for gathering born‐digital voucher specimen data for plants and fungi. Both programs are open source and use common file types simplifying either program's integration into existing workflows.

     
    more » « less
  5. In 2017 NSF funded “oVert (openVertebrate): Open Exploration of Vertebrate Diversity in 3D,” which is the first Thematic Collections Network devoted entirely to vertebrate morphological specimens. The primary goal of oVert is to generate and serve high-resolution digital three-dimensional data for internal anatomy across vertebrate diversity. oVert will CT-scan >20,000 fluid-preserved specimens representing >80% of the living genera of vertebrates, providing broad coverage for exploration and research on all major groups of vertebrates. Contrast-enhanced scans will be generated to reveal soft tissues and organs for a majority of the living vertebrate families. This collection of digital imagery and three-dimensional volumes will be open for exploration, download, and use. These new media will provide unprecedented global access to valuable morphological data of specimens in US collections.oVert is developing best practices and guidelines for high-throughput CT-scanning, including efficient workflows, preferred resolutions, and archival formats that optimize the variety of downstream applications. Using the Integrated Digitized Biocollections (iDigBio) API, we have developed a workflow where people uploading media files to MorphoSource can search for and import metadata for specimens directly from iDigBio. Via a Rich Site Summary (RSS) feed from MorphoSource, Audubon Core data describing media files for a given scientific collection can be retrieved and integrated into institutional IPT and databases. Such data migration of large files requires attention to detail and the development of data workflows that ensure correct specimen mapping at all steps. The RSS feed from MorphoSource will also consolidate usage information for media files from specimens in each scientific collection for reporting. Additional goals of the project are to provide information vital to the creation of collection best practices for imaging permissions/copyright. A status report and update on best practices will be presented. 
    more » « less