skip to main content


Title: Libra: scalable k-mer based tool for massive all-vs-all metagenome comparisons
Award ID(s):
1640775 1639588
NSF-PAR ID:
10082442
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
GigaScience
ISSN:
2047-217X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the context of parallel applications, communication is a critical part of the infrastructure and a potential bottleneck. The traditional approach to tackle communication challenges consists of redesigning algorithms so that the complexity or the communication volume is reduced. However, there are algorithms like the Fast Fourier Transform (FFT) where reducing the volume of communication is very challenging yet can reap large benefit in terms of time-to-completion. In this paper, we revisit the implementation of the MPI all-to-all routine at the core of 3D FFTs by using advanced MPI features, such as One-Sided Communication, and integrate data compression during communication to reduce the volume of data exchanged. Since some compression techniques are ‘lossy’ in the sense that they involve a loss of accuracy, we study the impact of lossy compression in heFFTe, the state-of-the-art FFT library for large scale 3D FFTs on hybrid architectures with GPUs. Consequently, we design an approximate FFT algorithm that trades off user-controlled accuracy for speed. We show that we speedup the 3D FFTs proportionally to the compression rate. In terms of accuracy, comparing our approach with a reduced precision execution, where both the data and the computation are in reduced precision, we show that when the volume of communication is compressed to the size of the reduced precision data, the approximate FFT algorithm is as fast as the one in reduced precision while the accuracy is one order of magnitude better. 
    more » « less