- PAR ID:
- 10082515
- Date Published:
- Journal Name:
- WUWNet '18 Proceedings of the Thirteenth ACM International Conference on Underwater Networks & Systems
- Page Range / eLocation ID:
- 1 to 5
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Exploiting Magnetic Field Analysis to Characterize MI Wireless Communications in Subsea EnvironmentsIn this paper, we investigate the maximum transmission range and power efficiency of Magnetic Induction (MI) subsea wireless communication systems. We propose a new MI channel model based on maximum resonance voltage analysis. We prove that our channel model can maximize the system signal to noise ratio (SNR). Hence, the maximum transmission range of a MI wireless communication system can be determined accordingly. Furthermore, we quantify the eddy current loss of the MI coil antenna in seawater environments. The power consumption of a subsea MI wireless communication system is obtained by summing up the eddy current loss and ohmic loss. Finally, the relationship between the maximum transmission range and power consumption of a subsea MI wireless communication system is determined.more » « less
-
This paper designs a novel geometry-conformal antenna for Magnetic Induction (MI)-based subsea wireless communications for autonomous underwater vehicles (AUV). The designed tri-directional antennas can be wrapped directly on the surface of AUVs, such that the AUVs fluid dynamics are well maintained to ensure power efficiency of the vehicles. In addition, ferrite materials are added between the MI antenna and the metallic body surface of the AUVs to overcome the shielding effect and enhance the MI signal strength. The designed MI communication system is implemented in hardware and the effectiveness of the geometry-conformal MI antenna is demonstrated through COMSOL simulations and lab experiments.more » « less
-
Underwater wireless communication and network- ing are becoming key enablers of a number of critical marine and underwater applications. Experimentation is underway, in controlled environments as well as at sea, that concerns the deployment of several underwater devices providing wireless communication capabilities to sensors of different nature. Con- trolling the deployment at sea of these devices, remotely and efficiently, is paramount for enabling expedite testing of hardware and protocol development. To address this need, this paper presents the design, development, and testing of a Smart Buoy for real-time remote access to underwater devices and for provision of power and extended computational capabilities. Experimental results are shown concerning the time needed to connect with the Smart Buoy, the power consumption of its operations, and the energy harvesting intake (via solar panels) in time. We also investigate the buoy lifetime when powered by solar panels and supporting acoustic modems over varying traffic scenarios.more » « less
-
Abstract Imaging underwater environments is of great importance to marine sciences, sustainability, climatology, defense, robotics, geology, space exploration, and food security. Despite advances in underwater imaging, most of the ocean and marine organisms remain unobserved and undiscovered. Existing methods for underwater imaging are unsuitable for scalable, long-term, in situ observations because they require tethering for power and communication. Here we describe underwater backscatter imaging, a method for scalable, real-time wireless imaging of underwater environments using fully-submerged battery-free cameras. The cameras power up from harvested acoustic energy, capture color images using ultra-low-power active illumination and a monochrome image sensor, and communicate wirelessly at net-zero-power via acoustic backscatter. We demonstrate wireless battery-free imaging of animals, plants, pollutants, and localization tags in enclosed and open-water environments. The method’s self-sustaining nature makes it desirable for massive, continuous, and long-term ocean deployments with many applications including marine life discovery, submarine surveillance, and underwater climate change monitoring.
-
The current era is notably characterized by the major advances in communication technologies. The increased connectivity has been transformative in terrestrial, space, and undersea applications. Nonetheless, the water medium imposes unique constraints on the signals that can be pursued for establishing wireless links. While numerous studies have been dedicated to tackling the challenges for underwater communication, little attention has been paid to effectively interfacing the underwater networks to remote entities. Particularly it has been conventionally assumed that a surface node will be deployed to act as a relay using acoustic links for underwater nodes and radio links for air-based communication. Yet, such an assumption could be, in fact, a hindrance in practice. The paper discusses alternative means by allowing communication across the air–water interface. Specifically, the optoacoustic effect, also referred to as photoacoustic effect, is being exploited as a means for achieving connectivity between underwater and airborne nodes. The paper provides background, discusses technical challenges, and summarizes progress. Open research problems are also highlighted.more » « less