skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ROV assisted magnetic induction communication field tests in underwater environments
Magnetic Induction (MI) is a promising technique for near-field wireless underwater communications. Although the literature has some theoretical analyses and lab experiments for underwater MI communication, there is a lack of field tests in underwater environments, especially in subsea environments. In this paper, we leverage the remotely operated vehicle (ROV) and the remotely controlled boat (RCB) to develop an MI wireless communication system, and conduct field tests for MI communication performance in both fresh water and sea water. The experiment results show that even in the most challenging subsea environment, the MI communication has very good near-field transmission performance with a small coil antenna and low power consumption.  more » « less
Award ID(s):
1646607 1801925 1613661
PAR ID:
10082515
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
WUWNet '18 Proceedings of the Thirteenth ACM International Conference on Underwater Networks & Systems
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we investigate the maximum transmission range and power efficiency of Magnetic Induction (MI) subsea wireless communication systems. We propose a new MI channel model based on maximum resonance voltage analysis. We prove that our channel model can maximize the system signal to noise ratio (SNR). Hence, the maximum transmission range of a MI wireless communication system can be determined accordingly. Furthermore, we quantify the eddy current loss of the MI coil antenna in seawater environments. The power consumption of a subsea MI wireless communication system is obtained by summing up the eddy current loss and ohmic loss. Finally, the relationship between the maximum transmission range and power consumption of a subsea MI wireless communication system is determined. 
    more » « less
  2. This paper designs a novel geometry-conformal antenna for Magnetic Induction (MI)-based subsea wireless communications for autonomous underwater vehicles (AUV). The designed tri-directional antennas can be wrapped directly on the surface of AUVs, such that the AUVs fluid dynamics are well maintained to ensure power efficiency of the vehicles. In addition, ferrite materials are added between the MI antenna and the metallic body surface of the AUVs to overcome the shielding effect and enhance the MI signal strength. The designed MI communication system is implemented in hardware and the effectiveness of the geometry-conformal MI antenna is demonstrated through COMSOL simulations and lab experiments. 
    more » « less
  3. Underwater wireless communication and network- ing are becoming key enablers of a number of critical marine and underwater applications. Experimentation is underway, in controlled environments as well as at sea, that concerns the deployment of several underwater devices providing wireless communication capabilities to sensors of different nature. Con- trolling the deployment at sea of these devices, remotely and efficiently, is paramount for enabling expedite testing of hardware and protocol development. To address this need, this paper presents the design, development, and testing of a Smart Buoy for real-time remote access to underwater devices and for provision of power and extended computational capabilities. Experimental results are shown concerning the time needed to connect with the Smart Buoy, the power consumption of its operations, and the energy harvesting intake (via solar panels) in time. We also investigate the buoy lifetime when powered by solar panels and supporting acoustic modems over varying traffic scenarios. 
    more » « less
  4. Abstract Imaging underwater environments is of great importance to marine sciences, sustainability, climatology, defense, robotics, geology, space exploration, and food security. Despite advances in underwater imaging, most of the ocean and marine organisms remain unobserved and undiscovered. Existing methods for underwater imaging are unsuitable for scalable, long-term, in situ observations because they require tethering for power and communication. Here we describe underwater backscatter imaging, a method for scalable, real-time wireless imaging of underwater environments using fully-submerged battery-free cameras. The cameras power up from harvested acoustic energy, capture color images using ultra-low-power active illumination and a monochrome image sensor, and communicate wirelessly at net-zero-power via acoustic backscatter. We demonstrate wireless battery-free imaging of animals, plants, pollutants, and localization tags in enclosed and open-water environments. The method’s self-sustaining nature makes it desirable for massive, continuous, and long-term ocean deployments with many applications including marine life discovery, submarine surveillance, and underwater climate change monitoring. 
    more » « less
  5. Sensing and communication technology has been used successfully in various event monitoring applications over the last two decades, especially in places where long-term manual monitoring is infeasible. However, the major applicability of this technology was mostly limited to terrestrial environments. On the other hand, underwater wireless sensor networks (UWSNs) opens a new space for the remote monitoring of underwater species and faunas, along with communicating with underwater vehicles, submarines, and so on. However, as opposed to terrestrial radio communication, underwater environment brings new challenges for reliable communication due to the high conductivity of the aqueous medium which leads to major signal absorption. In this paper, we provide a detailed technical overview of different underwater communication technologies, namely acoustic, magnetic, and visual light, along with their potentials and challenges in submarine environments. Detailed comparison among these technologies have also been laid out along with their pros and cons using real experimental results. 
    more » « less