Abstract Long‐term datasets are needed to evaluate temporal patterns in wildlife disease burdens, but historical data on parasite abundance are extremely rare. For more than a century, natural history collections have been accumulating fluid‐preserved specimens, which should contain the parasites infecting the host at the time of its preservation. However, before this unique data source can be exploited, we must identify the artifacts that are introduced by the preservation process. Here, we experimentally address whether the preservation process alters the degree to which metazoan parasites are detectable in fluid‐preserved fish specimens when using visual parasite detection techniques. We randomly assigned fish of three species (Gadus chalcogrammus, Thaleichthys pacificus, and Parophrys vetulus) to two treatments. In the first treatment, fish were preserved according to the standard procedures used in ichthyological collections. Immediately after the fluid‐preservation process was complete, we performed parasitological dissection on those specimens. The second treatment was a control, in which fish were dissected without being subjected to the fluid‐preservation process. We compared parasite abundance between the two treatments. Across 298 fish individuals and 59 host–parasite pairs, we found few differences between treatments, with 24 of 27 host–parasite pairs equally abundant between the two treatments. Of these, one pair was significantly more abundant in the preservation treatment than in the control group, and two pairs were significantly less abundant in the preservation treatment than in the control group. Our data suggest that the fluid‐preservation process does not have a substantial effect on the detectability of metazoan parasites. This study addresses only the effects of the fixation and preservation process; long‐term experiments are needed to address whether parasite detectability remains unchanged in the months, years, and decades of storage following preservation. If so, ecologists will be able to reconstruct novel, long‐term datasets on parasite diversity and abundance over the past century or more using fluid‐preserved specimens from natural history collections.
more »
« less
Preservation and detectability of shock-induced magnetization: PRESERVATION AND DETECTABILITY OF SRM
More Like this
-
-
Abstract Using neural networks, we integrate the ability to account for Doppler smearing due to a pulsar’s orbital motion with the pulsar population synthesis package psrpoppy to develop accurate modeling of the observed binary pulsar population. As a first application, we show that binary neutron star systems where the two components have highly unequal mass are, on average, easier to detect than systems that are symmetric in mass. We then investigate the population of ultracompact (1.5 minutes ≤ P b ≤ 15 minutes) neutron star–white dwarf (NS–WD) and double neutron star (DNS) systems, which are promising sources for the Laser Interferometer Space Antenna gravitational-wave detector. Given the nondetection of these systems in radio surveys thus far, we estimate a 95% confidence upper limit of ∼1450 and ∼1100 ultracompact NS–WD and DNS systems in the Milky Way that are beaming toward the Earth, respectively. We also show that using survey integration times in the range 20 s–200 s with time-domain resampling will maximize the signal-to-noise ratio as well as the probability of detection of these ultracompact binary systems. Among all the large-scale radio pulsar surveys, those that are currently being carried out using archival data collected with the Arecibo radio telescope have a ∼50%–80% chance of detecting at least one of these systems using current integration integration times and ∼80%–95% using optimal integration times in the next several years.more » « less
An official website of the United States government

