Abstract Climate change is expected to exacerbate the urban heat island (UHI) effect in cities worldwide, increasing the risk of heat-related morbidity and mortality. Solar reflective ‘cool pavement’ is one of several mitigation strategies that may counteract the negative effects of the UHI effect. An increase in pavement albedo results in less heat absorption, which results in reduced surface temperatures ( T surface ). Near surface air temperatures ( T air ) could also be reduced if cool pavements are deployed at sufficiently large spatial scales, though this has never been confirmed by field measurements. This field study is the first to conduct controlled measurements of the impacts of neighborhood-scale cool pavement installations. We measured the impacts of cool pavement on albedo, T surface , and T air . In addition, pavement albedo was monitored after installation to assess its degradation over time. The field site (∼0.64 km 2 ) was located in Covina, California; ∼30 km east of Downtown Los Angeles. We found that an average pavement albedo increase of 0.18 (from 0.08 to 0.26) corresponded to maximum neighborhood averaged T surface and T air reductions of 5 °C and 0.2 °C, respectively. Maximum T surface reductions were observed in the afternoon, while minimum reductions of 0.9 °C were observed in the morning. T air reductions were detected at 12:00 local standard time (LST), and from 20:00 LST to 22:59 LST, suggesting that cool pavement decreases T air during the daytime as well as in the evening. An average albedo reduction of 30% corresponded to a ∼1 °C reduction in the T surface cooling efficacy. Although we present here the first measured T air reductions due to cool pavement, we emphasize that the tradeoffs between T air reductions and reflected shortwave radiation increases are still unclear and warrant further investigation in order to holistically assess the efficacy of cool pavements, especially with regards to pedestrian thermal comfort.
more »
« less
Observational Evidence of Neighborhood Scale Reductions in Air Temperature Associated with Increases in Roof Albedo
The effects of neighborhood-scale land use and land cover (LULC) properties on observed air temperatures are investigated in two regions within Los Angeles County: Central Los Angeles and the San Fernando Valley (SFV). LULC properties of particular interest in this study are albedo and tree fraction. High spatial density meteorological observations are obtained from 76 personal weather-stations. Observed air temperatures were then related to the spatial mean of each LULC parameter within a 500 m radius “neighborhood” of each weather station, using robust regression for each hour of July 2015. For the neighborhoods under investigation, increases in roof albedo are associated with decreases in air temperature, with the strongest sensitivities occurring in the afternoon. Air temperatures at 14:00–15:00 local daylight time are reduced by 0.31 °C and 0.49 °C per 1 MW increase in daily average solar power reflected from roofs per neighborhood in SFV and Central Los Angeles, respectively. Per 0.10 increase in neighborhood average albedo, daily average air temperatures were reduced by 0.25 °C and 1.84 °C. While roof albedo effects on air temperature seem to exceed tree fraction effects during the day in these two regions, increases in tree fraction are associated with reduced air temperatures at night.
more »
« less
- PAR ID:
- 10082687
- Date Published:
- Journal Name:
- Climate
- Volume:
- 6
- Issue:
- 4
- ISSN:
- 2225-1154
- Page Range / eLocation ID:
- 98
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Urban overheating presents significant challenges to public health and energy sustainability. Conventional radiative cooling strategies, such as cool roofs with high albedo, lead to undesired winter cooling and increased space heating demand for cities with cold winters, a phenomenon known as heating energy penalty. A novel roof coating with high albedo and temperature‐adaptive emissivity (TAE)—low emissivity during cold conditions and high emissivity during hot conditions—has the potential to mitigate winter heating energy penalty. In this study, we implement this roof coating in a global climate model to evaluate its impact on air temperature and building energy demand for space heating and cooling in global cities. Adopting roofs with TAE increases global urban air temperature by up to +0.54°C in the winter (99th percentile; mean change +0.16°C) but has negligible effects on summer urban air temperature (mean change +0.05°C). Combining TAE with high albedo effectively provides summer cooling and does not increase building energy demand in the winter, particularly for mid‐latitude cities. Sensitivities of air temperature to changes in emissivity and albedo are associated with local “apparent” net longwave radiation and incoming solar radiation, respectively. We propose a simple parameterization of air temperature responses to emissivity and albedo to facilitate the development of city‐specific radiative mitigation strategies. This study emphasizes the necessity of developing mitigation approaches specific to local cloudiness.more » « less
-
The ozone air quality standard is regularly surpassed in the Los Angeles air basin, and efforts to mitigate ozone production have targeted emissions of precursor volatile organic compounds (VOCs), especially from mobile sources. In order to assess how VOC concentrations, emissions, and chemistry have changed over the past decade, VOCs were measured in this study using a Vocus‐2R proton‐transfer reaction time‐of‐flight mass spectrometer in Pasadena, California, downwind of Los Angeles, in summer 2022. Relative to 2010, ambient concentrations of aromatic hydrocarbons have declined at a similar rate as carbon monoxide, suggesting reduced overall emissions from mobile sources. However, the ambient concentrations of oxygenated VOCs have remained similar or increased, suggesting a greater relative importance of oxidation products and other emission sources, such as volatile chemical products whose emissions are largely unregulated. Relative to 2010, the range of measured VOCs was expanded, including higher aromatics and additional volatile chemical products, allowing a better understanding of a wider range of emission sources. Emission ratios relative to carbon monoxide were estimated and compared with 2010 emission ratios. Average measured ozone concentrations were generally comparable between 2022 and 2010; however, at the same temperature, daytime ozone concentrations were lower in 2022 than 2010. Faster photochemistry was observed in 2022, with average hydroxyl radical exposure being ∼68% higher during midday (statistically significant at 95% confidence), although this difference reduces to ∼35% when comparing observations at ambient temperatures of 25–30°C only. Future trends in temperature are important in predicting ozone production.more » « less
-
Abstract. Using archival research methods, we recovered and combined data from multiple sources to produce a unique, 140-year record of daily watertemperature (Tw) in the lower Willamette River, Oregon (1881–1890, 1941–present). Additional daily weather and river flow records from the 1850s onwards are used to develop and validate a statistical regression model of Tw for 1850–2020. The model simulates the time-lagged response of Tw to air temperature and river flow and is calibrated for three distinct time periods: the late 19th, mid-20th, and early 21st centuries. Results show that Tw has trended upwards at 1.1 ∘C per century since the mid-19th century, with the largest shift in January and February (1.3 ∘C per century) and the smallest in May and June (∼ 0.8 ∘C per century). The duration that the river exceeds the ecologically important threshold of 20 ∘C has increased by about 20 d since the 1800s, to about 60 d yr−1. Moreover, cold-water days below 2 ∘C have virtually disappeared, and the river no longer freezes. Since 1900, changes are primarily correlated with increasesin air temperature (Tw increase of 0.81 ± 0.25 ∘C) but also occur due to alterations in the river system such as depth increases from reservoirs (0.34 ± 0.12 ∘C). Managed release of water affects Tw seasonally, with an average reduction of up to 0.56 ∘C estimated for September. River system changes have decreased variability (σ) in daily minimum Tw by 0.44 ∘C, increased thermal memory, reduced interannual variability, and reduced the response to short-term meteorological forcing (e.g., heat waves). These changes fundamentally alter the response of Tw to climate change, posing additional stressors on fauna.more » « less
-
Abstract As a consequence of the warm and humid climate of tropical coastal regions, there is high energy demand year-round due to air conditioning to maintain indoor comfort levels. Past and current practices are focused on mitigating peak cooling demands by improving heat balances by using efficient building envelope technologies, passive systems, and demand side management strategies. In this study, we explore city-scale solar photovoltaic (PV) planning integrating information on climate, building parameters and energy models, and electrical system performance, with added benefits for the tropical coastal city of San Juan, Puerto Rico. Energy balance on normal roof, flush-mounted PV roof, and tilted PV roof are used to determine PV power generation, air, and roof surface temperatures. To scale up the application to the whole city, we use the urbanized version of the Weather Research and Forecast (WRF) model with the building effect parameterization (BEP) and the building energy model (BEM). The city topology is represented by the World Urban Database Access Portal Tool (WUDAPT), local climate zones (LCZs) for urban landscapes. The modeled peak roof temperature is maximum for normal roof conditions and minimum when inclined PV is installed on a roof. These trends are followed by the building air conditioning (AC) demand from urbanized WRF, maximum for normal roof and minimum for inclined roof-mounted PV. The net result is a reduced daytime Urban Heat Island (UHI) for horizontal and inclined PV roof and increased nighttime UHI for the horizontal PV roof as compared with the normal roof. The ratio between coincident AC demand and PV production for the entire metropolitan region is further analyzed reaching 20% for compact low rise and open low rise buildings due to adequate roof area but reaches almost 100% for compact high rise and compact midrise buildings class, respectively.more » « less
An official website of the United States government

