skip to main content

Title: Phenology and productivity in a montane bird assemblage: Trends and responses to elevation and climate variation

Climate variation has been linked to historical and predicted future distributions and dynamics of wildlife populations. However, demographic mechanisms underlying these changes remain poorly understood. Here, we assessed variation and trends in climate (annual snowfall and spring temperature anomalies) and avian demographic variables from mist‐netting data (breeding phenology and productivity) at six sites along an elevation gradient spanning the montane zone of Yosemite National Park between 1993 and 2017. We implemented multi‐species hierarchical models to relate demographic responses to elevation and climate covariates. Annual variation in climate and avian demographic variables was high. Snowfall declined (10 mm/year at the highest site, 2 mm at the lowest site), while spring temperature increased (0.045°C/year) over the study period. Breeding phenology (mean first capture date of juvenile birds) advanced by 0.2 day/year (5 days); and productivity (probability of capturing a juvenile bird) increased by 0.8%/year. Breeding phenology was 12 days earlier at the lowest compared to highest site, 18 days earlier in years with lowest compared to highest snowfall anomalies, and 6 d earlier in relatively warm springs (after controlling for snowfall effects). Productivity was positively related to elevation. However, elevation–productivity responses varied among species; species with higher productivity at higher compared to lower elevations tended to be species with documented range retractions during the past century. Productivity tended to be negatively related to snowfall and was positively related to spring temperature. Overall, our results suggest that birds have tracked the variable climatic conditions in this system and have benefited from a trend toward warmer, drier springs. However, we caution that continued warming and multi‐year drought or extreme weather years may alter these relationships in the future. Multi‐species demographic modeling, such as implemented here, can provide an important tool for guiding conservation of species assemblages under global change.

more » « less
Award ID(s):
1703048 2033263
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Global Change Biology
Page Range / eLocation ID:
p. 985-996
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Changes in phenology in response to ongoing climate change have been observed in numerous taxa around the world. Differing rates of phenological shifts across trophic levels have led to concerns that ecological interactions may become increasingly decoupled in time, with potential negative consequences for populations. Despite widespread evidence of phenological change and a broad body of supporting theory, large-scale multitaxa evidence for demographic consequences of phenological asynchrony remains elusive. Using data from a continental-scale bird-banding program, we assess the impact of phenological dynamics on avian breeding productivity in 41 species of migratory and resident North American birds breeding in and around forested areas. We find strong evidence for a phenological optimum where breeding productivity decreases in years with both particularly early or late phenology and when breeding occurs early or late relative to local vegetation phenology. Moreover, we demonstrate that landbird breeding phenology did not keep pace with shifts in the timing of vegetation green-up over a recent 18-y period, even though avian breeding phenology has tracked green-up with greater sensitivity than arrival for migratory species. Species whose breeding phenology more closely tracked green-up tend to migrate shorter distances (or are resident over the entire year) and breed earlier in the season. These results showcase the broadest-scale evidence yet of the demographic impacts of phenological change. Future climate change–associated phenological shifts will likely result in a decrease in breeding productivity for most species, given that bird breeding phenology is failing to keep pace with climate change. 
    more » « less
  2. Animals use climate-related environmental cues to fine-tune breeding timing and investment to match peak food availability. In birds, spring temperature is a commonly documented cue used to initiate breeding, but with global climate change, organisms are experiencing both directional changes in ambient temperatures and extreme year-to-year precipitation fluctuations. Montane environments exhibit complex climate patterns where temperatures and precipitation change along elevational gradients, and where exacerbated annual variation in precipitation has resulted in extreme swings between heavy snow and drought. We used 10 years of data to investigate how annual variation in climatic conditions is associated with differences in breeding phenology and reproductive performance in resident mountain chickadees (Poecile gambeli) at two elevations in the northern Sierra Nevada mountains, USA. Variation in spring temperature was not associated with differences in breeding phenology across elevations in our system. Greater snow accumulation was associated with later breeding initiation at high, but not low, elevation. Brood size was reduced under drought, but only at low elevation. Our data suggest complex relationships between climate and avian reproduction and point to autumn climate as important for reproductive performance, likely via its effect on phenology and abundance of invertebrates.

    more » « less
  3. In response to a warming planet with earlier springs, migratory animals are adjusting the timing of essential life stages. Although these adjustments may be essential for keeping pace with resource phenology, they may prove insufficient, as evidenced by population declines in many species. However, even when species can match the tempo of climate change, other consequences may emerge when exposed to novel conditions earlier in the year. Here, using three long-term datasets on bird reproduction, daily insect availability, and weather, we investigated the complex mechanisms affecting reproductive success in an aerial insectivore, the tree swallow (Tachycineta bicolor). By examining breeding records over nearly half a century, we discovered that tree swallows have continuously advanced their egg laying by ∼3 d per decade. However, earlier-hatching offspring are now exposed to inclement weather events twice as often as they were in the 1970s. Our long-term daily insect biomass dataset shows no long-term trends over 25 y but precipitous drops in flying insect numbers on days with low ambient temperatures. Insect availability has a considerable impact on chick survival: Even a single inclement weather event can reduce offspring survival by >50%. Our results highlight the multifaceted threats that climate change poses on migrating species. The decoupling between cold snap occurrence and generally warming spring temperatures can affect reproductive success and threaten long-term persistence of populations. Understanding the exact mechanisms that endanger aerial insectivores is especially timely because this guild is experiencing the steepest and most widespread declines across North America and Europe.

    more » « less
  4. Abstract

    Climate change is drastically changing the timing of biological events across the globe. Changes in the phenology of seasonal migrations between the breeding and wintering grounds have been observed across biological taxa, including birds, mammals, and insects. For birds, strong links have been shown between changes in migration phenology and changes in weather conditions at the wintering, stopover, and breeding areas. For other animal taxa, the current understanding of, and evidence for, climate (change) influences on migration still remains rather limited, mainly due to the lack of long‐term phenology datasets. Bracken Cave in Texas (USA) holds one of the largest bat colonies of the world. Using weather radar data, a unique 23‐year (1995–2017) long time series was recently produced of the spring and autumn migration phenology of Brazilian free‐tailed bats (Tadarida brasiliensis) at Bracken Cave. Here, we analyse these migration phenology time series in combination with gridded temperature, precipitation, and wind data across Mexico and southern USA, to identify the climatic drivers of (changes in) bat migration phenology. Perhaps surprisingly, our extensive spatiotemporal search did not find temperature to influence either spring or autumn migration. Instead, spring migration phenology seems to be predominantly driven by wind conditions at likely wintering or spring stopover areas during the migration period. Autumn migration phenology, on the other hand, seems to be dominated by precipitation to the east and north‐east of Bracken Cave. Long‐term changes towards more frequent migration and favourable wind conditions have, furthermore, allowed spring migration to occur 16 days earlier. Our results illustrate how some of the remaining knowledge gaps on the influence of climate (change) on bat migration and abundance can be addressed using weather radar analyses.

    more » « less
  5. Abstract

    Climate change is creating phenological mismatches between herbivores and their plant resources throughout the Arctic. While advancing growing seasons and changing arrival times of migratory herbivores can have consequences for herbivores and forage quality, developing mismatches could also influence other traits of plants, such as above‐ and below‐ground biomass and the type of reproduction, that are often not investigated.

    In coastal western Alaska, we conducted a 3‐year factorial experiment that simulated scenarios of phenological mismatch by manipulating the start of the growing season (3 weeks early and ambient) and grazing times (3 weeks early, typical, 3 weeks late, or no‐grazing) of Pacific black brant (Branta bernicla nigricans), to examine how the timing of these events influence a primary goose forage species,Carex subspathacea.

    After 3 years, an advanced growing season compared to a typical growing season increased stem heights, standing dead biomass, and the number of inflorescences. Early season grazing compared to typical season grazing reduced above‐ and below‐ground biomass, stem height, and the number of tillers; while late season grazing increased the number of inflorescences and standing dead biomass. Therefore, an advanced growing season and late grazing had similar directional effects on most plant traits, but a 3‐week delay in grazing had an impact on traits 3–5 times greater than a similarly timed shift in the advancement of spring. In addition, changes in response to treatments for some variables, such as the number of inflorescences, were not measurable until the second year of the experiment, while other variables, such as root productivity and number of tillers, changed the direction of their responses to treatments over time.

    Synthesis. Factors affecting the timing of migration have a larger influence than earlier springs on an important forage species in the breeding and rearing habitats of Pacific black brant. The phenological mismatch prediction for this site of earlier springs and later goose arrival will likely increase above‐ and below‐ground biomass and sexual reproduction of the often‐clonally reproducingC. subspathacea. Finally, the implications of mismatch may be difficult to predict because some variables required successive years of mismatch to respond.

    more » « less