skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Novel Crowd-Resilient Visual Localization Algorithm Via Robust Pca Background Extraction
We present a novel egocentric visual localization algorithm for an indoor navigation system, called PERCEPT-V, which is designed to assist the blind and visually impaired users traveling independently in an unfamiliar indoor space. Through the integration of a background extraction module based on Robust Principle Component Analysis (RPCA) into the localization algorithm, we successfully improve the resilience of camera localization to the presence of crowds in the observed scene. Experiments using datasets of videos containing various levels of crowd activity show that the proposed algorithm can increase prominently the reliability of localization performance.  more » « less
Award ID(s):
1645737
PAR ID:
10083427
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Page Range / eLocation ID:
1922 to 1926
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The Georgia Tech Miniature Autonomous Blimp (GT-MAB) needs localization algorithms to navigate to way-points in an indoor environment without leveraging an external motion capture system. Indoor aerial robots often require a motion capture system for localization or employ simultaneous localization and mapping (SLAM) algorithms for navigation. The proposed strategy for GT-MAB localization can be accomplished using lightweight sensors on a weight-constrained platform like the GT-MAB. We train an end-to-end convolutional neural network (CNN) that predicts the horizontal position and heading of the GT-MAB using video collected by an onboard monocular RGB camera. On the other hand, the height of the GT-MAB is estimated from measurements through a time-of-flight (ToF) single-beam laser sensor. The monocular camera and the single-beam laser sensor are sufficient for the localization algorithm to localize the GT-MAB in real time, achieving the averaged 3D positioning errors to be less than 20 cm, and the averaged heading errors to be less than 3 degrees. With the accuracy of our proposed localization method, we are able to use simple proportional-integral-derivative controllers to control the GT-MAB for waypoint navigation. Experimental results on the waypoint following are provided, which demonstrates the use of a CNN as the primary localization method for estimating the pose of an indoor robot that successfully enables navigation to specified waypoints. 
    more » « less
  2. In this work, we tackle the problem of active camera localization, which controls the camera movements actively to achieve an accurate camera pose. The past solutions are mostly based on Markov Localization, which reduces the position-wise camera uncertainty for localization. These approaches localize the camera in the discrete pose space and are agnostic to the localization-driven scene property, which restricts the camera pose accuracy in the coarse scale. We propose to overcome these limitations via a novel active camera localization algorithm, composed of a passive and an active localization module. The former optimizes the camera pose in the continuous pose space by establishing point-wise camera-world correspondences. The latter explicitly models the scene and camera uncertainty components to plan the right path for accurate camera pose estimation. We validate our algorithm on the challenging localization scenarios from both synthetic and scanned real-world indoor scenes. Experimental results demonstrate that our algorithm outperforms both the state-of-the-art Markov Localization based approach and other compared approaches on the fine-scale camera pose accuracy 
    more » « less
  3. Indoor localization plays a vital role in applications such as emergency response, warehouse management, and augmented reality experiences. By deploying machine learning (ML) based indoor localization frameworks on their mobile devices, users can localize themselves in a variety of indoor and subterranean environments. However, achieving accurate indoor localization can be challenging due to heterogeneity in the hardware and software stacks of mobile devices, which can result in inconsistent and inaccurate location estimates. Traditional ML models also heavily rely on initial training data, making them vulnerable to degradation in performance with dynamic changes across indoor environments. To address the challenges due to device heterogeneity and lack of adaptivity, we propose a novel embedded ML framework calledFedHIL. Our framework combines indoor localization and federated learning (FL) to improve indoor localization accuracy in device-heterogeneous environments while also preserving user data privacy.FedHILintegrates a domain-specific selective weight adjustment approach to preserve the ML model's performance for indoor localization during FL, even in the presence of extremely noisy data. Experimental evaluations in diverse real-world indoor environments and with heterogeneous mobile devices show thatFedHILoutperforms state-of-the-art FL and non-FL indoor localization frameworks.FedHILis able to achieve 1.62 × better localization accuracy on average than the best performing FL-based indoor localization framework from prior work. 
    more » « less
  4. Indoor localization is emerging as an important application domain for enhanced navigation (or tracking) of people and assets in indoor locales such as buildings, malls, and underground mines. Most indoor localization solutions proposed in prior work do not deliver good accuracy without expensive infrastructure (and even then, the results may lack consistency). Ambient wireless received signal strength indication (RSSI) based fingerprinting using smart mobile devices is a low-cost approach to the problem. However, creating an accurate ‘fingerprinting-only’ solution remains a challenge. This paper presents a novel approach to transform Wi-Fi signatures into images, to create a scalable fingerprinting framework based on Convolutional Neural Networks (CNNs). Our proposed CNN based indoor localization framework (CNN-LOC) is validated across several indoor environments and shows improvements over the best known prior works, with an average localization error of < 2 meters. 
    more » « less
  5. Enabling reliable indoor localization can facilitate several new applications akin to how outdoor localization systems, such as GPS, have facilitated. Currently, a few key hurdles remain that prevent indoor localization from reaching the same stature. These hurdles include complicated deployment, tight time synchronization requirements from time difference of arrival protocols, and a lack of mechanism to allow a pan-building seamless solution. This work explores ways in which these key hurdles can be overcome to enable a more pervasive use of indoor localization. We propose a novel passive ranging scheme where clients overhear ongoing two-way ranging wireless communication between a few infrastructure nodes, and compute their own relative location without transmitting any signals (preserving user privacy). Our approach of performing two-way ranging between infrastructure nodes removes a crucial timing requirement in traditional time-difference-of-arrival methods thereby relaxing the synchronization requirements imposed by previous techniques. We use ultra-wideband wireless (UWB) radios that can easily penetrate building materials so that spanning an entire floor of a large building with just a few infrastructure nodes is possible. We build working prototypes, including the necessary hardware, and demonstrate the plug-and-play nature of our proposed solution. Our evaluation in three indoor spaces shows 1–2 meter-level localization accuracy with areas as large as 2241sq.m. We expect our explorations to re-trigger interest in novel applications for indoor spaces based on fine-grained indoor location knowledge. 
    more » « less