skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Visual Robot Task Planning
Prospection, the act of predicting the consequences of many possible futures, is intrinsic to human planning and action, and may even be at the root of consciousness. Surprisingly, this idea has been explored comparatively little in robotics. In this work, we propose a neural network architecture and associated planning algorithm that (1) learns a representation of the world useful for generating prospective futures after the application of high-level actions from a large pool of expert demonstrations, (2) uses this generative model to simulate the result of sequences of high-level actions in a variety of environments, and (3) uses this same representation to evaluate these actions and perform tree search to find a sequence of high-level actions in a new environment. Models are trained via imitation learning on a variety of domains, including navigation, pick-and-place, and a surgical robotics task. Our approach allows us to visualize intermediate motion goals and learn to plan complex activity from visual information.  more » « less
Award ID(s):
1637949
PAR ID:
10083430
Author(s) / Creator(s):
Date Published:
Journal Name:
WORKSHOP ON LEARNING FROM DEMONSTRATIONS FOR HIGH LEVEL ROBOTIC TASKS, AT ROBOTICS SCIENCE AND SYSTEMS
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a learning‐from‐demonstration approach for grounding actions from expert data and an algorithm for using these actions to perform a task in new environments. Our approach is based on an application of sampling‐based motion planning to search through the tree of discrete, high‐level actions constructed from a symbolic representation of a task. Recursive sampling‐based planning is used to explore the space of possible continuous‐space instantiations of these actions. We demonstrate the utility of our approach with a magnetic structure assembly task, showing that the robot can intelligently select a sequence of actions in different parts of the workspace and in the presence of obstacles. This approach can better adapt to new environments by selecting the correct high‐level actions for the particular environment while taking human preferences into account. 
    more » « less
  2. continuous state and action spaces is bilevel planning, wherein a high- level search over an abstraction of an environment is used to guide low-level decision-making. Recent work has shown how to enable such bilevel planning by learning abstract models in the form of symbolic operators and neural sam- plers. In this work, we show that existing symbolic operator learning approaches fall short in many robotics domains where a robot’s actions tend to cause a large number of irrelevant changes in the abstract state. This is primarily because they attempt to learn operators that exactly predict all observed changes in the abstract state. To overcome this issue, we propose to learn operators that ‘choose what to predict’ by only modelling changes necessary for abstract planning to achieve specified goals. Experimentally, we show that our approach learns operators that lead to efficient planning across 10 different hybrid robotics domains, including 4 from the challenging BEHAVIOR-100 benchmark, while generalizing to novel initial states, goals, and objects. 
    more » « less
  3. Robots acting in human-scale environments must plan under uncertainty in large state–action spaces and face constantly changing reward functions as requirements and goals change. Planning under uncertainty in large state–action spaces requires hierarchical abstraction for efficient computation. We introduce a new hierarchical planning framework called Abstract Markov Decision Processes (AMDPs) that can plan in a fraction of the time needed for complex decision making in ordinary MDPs. AMDPs provide abstract states, actions, and transition dynamics in multiple layers above a base-level “flat” MDP. AMDPs decompose problems into a series of subtasks with both local reward and local transition functions used to create policies for subtasks. The resulting hierarchical planning method is independently optimal at each level of abstraction, and is recursively optimal when the local reward and transition functions are correct. We present empirical results showing significantly improved planning speed, while maintaining solution quality, in the Taxi domain and in a mobile-manipulation robotics problem. Furthermore, our approach allows specification of a decision-making model for a mobile-manipulation problem on a Turtlebot, spanning from low-level control actions operating on continuous variables all the way up through high-level object manipulation tasks. 
    more » « less
  4. Robots acting in human-scale environments must plan under uncertainty in large state–action spaces and face constantly changing reward functions as requirements and goals change. Planning under uncertainty in large state–action spaces requires hierarchical abstraction for efficient computation. We introduce a new hierarchical planning framework called Abstract Markov Decision Processes (AMDPs) that can plan in a fraction of the time needed for complex decision making in ordinary MDPs. AMDPs provide abstract states, actions, and transition dynamics in multiple layers above a base-level “flat” MDP. AMDPs decompose problems into a series of subtasks with both local reward and local transition functions used to create policies for subtasks. The resulting hierarchical planning method is independently optimal at each level of abstraction, and is recursively optimal when the local reward and transition functions are correct. We present empirical results showing significantly improved planning speed, while maintaining solution quality, in the Taxi domain and in a mobile-manipulation robotics problem. Furthermore, our approach allows specification of a decision-making model for a mobile-manipulation problem on a Turtlebot, spanning from low-level control actions operating on continuous variables all the way up through high-level object manipulation tasks. 
    more » « less
  5. null (Ed.)
    The objective of this work is to augment the basic abilities of a robot by learning to use sensorimotor primitives to solve complex long-horizon manipulation problems. This requires flexible generative planning that can combine primitive abilities in novel combinations and, thus, generalize across a wide variety of problems. In order to plan with primitive actions, we must have models of the actions: under what circumstances will executing this primitive successfully achieve some particular effect in the world? We use, and develop novel improvements to, state-of-the-art methods for active learning and sampling. We use Gaussian process methods for learning the constraints on skill effectiveness from small numbers of expensive-to-collect training examples. In addition, we develop efficient adaptive sampling methods for generating a comprehensive and diverse sequence of continuous candidate control parameter values (such as pouring waypoints for a cup) during planning. These values become end-effector goals for traditional motion planners that then solve for a full robot motion that performs the skill. By using learning and planning methods in conjunction, we take advantage of the strengths of each and plan for a wide variety of complex dynamic manipulation tasks. We demonstrate our approach in an integrated system, combining traditional robotics primitives with our newly learned models using an efficient robot task and motion planner. We evaluate our approach both in simulation and in the real world through measuring the quality of the selected primitive actions. Finally, we apply our integrated system to a variety of long-horizon simulated and real-world manipulation problems. 
    more » « less