skip to main content


Title: ATRP of N ‐Hydroxyethyl Acrylamide in the Presence of Lewis Acids: Control of Tacticity, Molecular Weight, and Architecture
Abstract

Good control of tacticity, molecular weight, and architecture is attained via atom transfer radical polymerization (ATRP) ofN‐hydroxyethyl acrylamide (HEAA), in a one‐pot process in the presence of Y(OTf)3. The effect of temperature, ratio of [Y(OTf)3]/[HEAA], and ATRP procedure on the tacticity and degree of control over the polymerization is investigated in detail. Under optimal conditions, using photo ATRP and 15% Y(OTf)3,the content of meso dyads (m) can be increased from 42% to 80% in a homopolymer with a dispersityD = 1.22. Well‐defined stereoblock copolymers, atactic‐b‐isotactic poly(HEAA), withD = 1.27, are obtained by adding Y(OTf)3at a specific conversion, initially started without Y(OTf)3.

 
more » « less
Award ID(s):
1707490
NSF-PAR ID:
10083435
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Macromolecular Rapid Communications
Volume:
40
Issue:
10
ISSN:
1022-1336
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We introduce the heterocumulene ligand [(Ad)NCC(tBu)](Ad=1‐adamantyl (C10H15),tBu=tert‐butyl, (C4H9)), which can adopt two forms, the azaalleneyl and ynamide. This ligand platform can undergo a reversible chelotropic shift using Brønsted acid‐base chemistry, which promotes an unprecedented spin‐state change of the [VIII] ion. These unique scaffolds are prepared via addition of 1‐adamantyl isonitrile (C≡NAd) across the alkylidyne in complexes [(BDI)V≡CtBu(OTf)] (A) (BDI=ArNC(CH3)CHC(CH3)NAr), Ar=2,6‐iPr2C6H3) and [(dBDI)V≡CtBu(OEt2)] (B) (dBDI2−=ArNC(CH3)CHC(CH2)NAr). ComplexAreacts with C≡NAd, to generate the high‐spin [VIII] complex with a κ1N‐ynamide ligand, [(BDI)V{κ1N‐(Ad)NCC(tBu)}(OTf)] (1). Conversely,Breacts with C≡NAd to generate a low‐spin [VIII] diamagnetic complex having a chelated κ2C,N‐azaalleneyl ligand, [(dBDI)V{κ2N,C‐(Ad)NCC(tBu)}] (2). Theoretical studies have been applied to better understand the mechanism of formation of2and the electronic reconfiguration upon structural rearrangement by the alteration of ligand denticity between1and2.

     
    more » « less
  2. Abstract

    We introduce the heterocumulene ligand [(Ad)NCC(tBu)](Ad=1‐adamantyl (C10H15),tBu=tert‐butyl, (C4H9)), which can adopt two forms, the azaalleneyl and ynamide. This ligand platform can undergo a reversible chelotropic shift using Brønsted acid‐base chemistry, which promotes an unprecedented spin‐state change of the [VIII] ion. These unique scaffolds are prepared via addition of 1‐adamantyl isonitrile (C≡NAd) across the alkylidyne in complexes [(BDI)V≡CtBu(OTf)] (A) (BDI=ArNC(CH3)CHC(CH3)NAr), Ar=2,6‐iPr2C6H3) and [(dBDI)V≡CtBu(OEt2)] (B) (dBDI2−=ArNC(CH3)CHC(CH2)NAr). ComplexAreacts with C≡NAd, to generate the high‐spin [VIII] complex with a κ1N‐ynamide ligand, [(BDI)V{κ1N‐(Ad)NCC(tBu)}(OTf)] (1). Conversely,Breacts with C≡NAd to generate a low‐spin [VIII] diamagnetic complex having a chelated κ2C,N‐azaalleneyl ligand, [(dBDI)V{κ2N,C‐(Ad)NCC(tBu)}] (2). Theoretical studies have been applied to better understand the mechanism of formation of2and the electronic reconfiguration upon structural rearrangement by the alteration of ligand denticity between1and2.

     
    more » « less
  3. ABSTRACT

    Electrochemically mediated atom transfer radical polymerizations (ATRPs) provide well‐defined polymers with designed dispersity as well as under external temporal and spatial control. In this study, 1‐cyano‐1‐methylethyl diethyldithiocarbamate, typically used as chain‐transfer agent (CTA) in reversible addition–fragmentation chain transfer (RAFT) polymerization, was electrochemically activated by the ATRP catalyst CuI/2,2′‐bipyridine (bpy) to control the polymerization of methyl methacrylate. Mechanistic study showed that this polymerization was mainly controlled by the ATRP equilibrium. The effect of applied potential, catalyst counterion, catalyst concentration, and targeted degree of polymerization were investigated. The chain‐end functionality was preserved as demonstrated by chain extension of poly(methyl methacrylate) withn‐butyl methacrylate and styrene. This electrochemical ATRP procedure confirms that RAFT CTAs can be activated by an electrochemical stimulus. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2019,57, 376–381

     
    more » « less
  4. Abstract

    A facile and efficient two‐step synthesis ofp‐substituted tris(2‐pyridylmethyl)amine (TPMA) ligands to form Cu complexes with the highest activity to date in atom transfer radical polymerization (ATRP) is presented. In the divergent synthesis,p‐Cl substituents in tris(4‐chloro‐2‐pyridylmethyl)amine (TPMA3Cl) were replaced in one step and high yield by electron‐donating cyclic amines (pyrrolidine (TPMAPYR), piperidine (TPMAPIP), and morpholine (TPMAMOR)) by nucleophilic aromatic substitution. The [CuII(TPMANR2)Br]+complexes exhibited larger energy gaps between frontier molecular orbitals and >0.2 V more negative reduction potentials than [CuII(TPMA)Br]+, indicating >3 orders of magnitude higher ATRP activity. [CuI(TPMAPYR)]+exhibited the highest reported activity for Br‐capped acrylate chain ends in DMF, and moderate activity toward C−F bonds at room temperature. ATRP ofn‐butyl acrylate using only 10–25 part per million loadings of [CuII(TPMANR2)Br]+exhibited excellent control.

     
    more » « less
  5. Abstract

    A facile and efficient two‐step synthesis ofp‐substituted tris(2‐pyridylmethyl)amine (TPMA) ligands to form Cu complexes with the highest activity to date in atom transfer radical polymerization (ATRP) is presented. In the divergent synthesis,p‐Cl substituents in tris(4‐chloro‐2‐pyridylmethyl)amine (TPMA3Cl) were replaced in one step and high yield by electron‐donating cyclic amines (pyrrolidine (TPMAPYR), piperidine (TPMAPIP), and morpholine (TPMAMOR)) by nucleophilic aromatic substitution. The [CuII(TPMANR2)Br]+complexes exhibited larger energy gaps between frontier molecular orbitals and >0.2 V more negative reduction potentials than [CuII(TPMA)Br]+, indicating >3 orders of magnitude higher ATRP activity. [CuI(TPMAPYR)]+exhibited the highest reported activity for Br‐capped acrylate chain ends in DMF, and moderate activity toward C−F bonds at room temperature. ATRP ofn‐butyl acrylate using only 10–25 part per million loadings of [CuII(TPMANR2)Br]+exhibited excellent control.

     
    more » « less