Abstract Ice crystals commonly adopt a horizontal orientation under certain aerodynamic and electrodynamic conditions that occur in the atmosphere. While the radiative impact of horizontally oriented ice crystals (HOIC) has been theoretically studied with respect to their impact on shortwave cloud albedo, the longwave impact remains unexplored. This work analyzes the occurrence of HOIC at Summit, Greenland, from July 2015 to June 2017. Using polarization lidar and ancillary atmospheric sensors, ice crystal orientations are identified and used to interpret cloud radiative impact on the surface radiation budget. We find HOIC occur in at least 25.6% of all ice‐only column observations. We find that the shortwave impact of HOIC is to increase cloud radiative effect by approximately 22% for a given solar zenith angle. We also find that the longwave impact of HOIC compared to randomly oriented ice crystals are statistically different at the p < 0.01 significance level, increasing the surface radiative effect by approximately 8% for clouds with infrared optical depths < ~1. We suggest that the observed difference between the surface radiative effect for clouds containing randomly oriented ice crystals and HOIC may be due to enhanced scattering, but this hypothesis needs to be further explored with more detailed observations and modeling.
more »
« less
Terrestrial glint seen from deep space: Oriented ice crystals detected from the Lagrangian point: ORIENTED ICE CRYSTALS SEEN FROM L1 POINT
- Award ID(s):
- 1639868
- PAR ID:
- 10083439
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 44
- Issue:
- 10
- ISSN:
- 0094-8276
- Page Range / eLocation ID:
- 5197 to 5202
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A database (TAMUoic2019) of the scattering, absorption, and polarization properties of horizontally oriented hexagonal plates (HOPs) and horizontally oriented hexagonal columns (HOCs) at three wavelengths (355, 532, and 1064 nm) is developed for applications to radiative transfer simulations and remote sensing implementations involving oriented ice crystals. The maximum dimension of oriented ice crystals ranges from 50 to 10 000 μm in 165 discrete size bins. The database accounts for 94 incident directions. The single-scattering properties of oriented ice crystals are computed with the physical-geometric optics method (PGOM), which is consistent with the invariant-imbedding T-matrix method for particles with size parameters larger than approximately 100–150. Note that the accuracy of PGOM increases as the size parameter increases. PGOM computes the two-dimensional phase matrix as a function of scattering polar and azimuth angles, and the phase matrix significantly varies with the incident direction. To derive the bulk optical properties of ice clouds for practical radiative transfer applications, the optical properties of individual HOPs and HOCs are averaged over the probability distribution of the tilting angle of oriented ice crystals based on the use of the TAMUoic2019 database. Simulations of lidar signals associated with ice clouds based on the bulk optical properties indicate the importance of the fraction of oriented ice crystals and the probability distribution of the tilting angle. Simulations of optical phenomena caused by oriented ice crystals demonstrate that the computed single-scattering properties of oriented ice crystals are physically rational.more » « less
-
null (Ed.)Abstract Piezoelectric polymers hold great potential for various electromechanical applications, but only show low performance, with | d 33 | < 30 pC/N. We prepare a highly piezoelectric polymer ( d 33 = −62 pC/N) based on a biaxially oriented poly(vinylidene fluoride) (BOPVDF, crystallinity = 0.52). After unidirectional poling, macroscopically aligned samples with pure β crystals are achieved, which show a high spontaneous polarization ( P s ) of 140 mC/m 2 . Given the theoretical limit of P s,β = 188 mC/m 2 for the neat β crystal, the high P s cannot be explained by the crystalline-amorphous two-phase model (i.e., P s,β = 270 mC/m 2 ). Instead, we deduce that a significant amount (at least 0.25) of an oriented amorphous fraction (OAF) must be present between these two phases. Experimental data suggest that the mobile OAF resulted in the negative and high d 33 for the poled BOPVDF. The plausibility of this conclusion is supported by molecular dynamics simulations.more » « less
-
Abstract All cloud and climate models assume ice crystals grow as if they were formed from pure water, even though cloud and haze droplets are solutions. The freezing process of a solution droplet is different than that of a pure water droplet, as shown in prior work. This difference can potentially affect the particle’s subsequent growth as an ice crystal. We present measurements of ice crystal growth from frozen sodium chloride (NaCl) solution droplets in the button electrode levitation diffusion chamber at temperatures between −61° and −40°C. Measured scattering patterns show that concentrated solution droplets remain unfrozen with classical scattering fringes until the droplets freeze. Upon freezing, the scattering patterns become complex within 0.1 s, which is in contrast with frozen pure water particles that retain liquid-like scattering patterns for about a minute. We show that after freezing, solution particles initially grow as spherical-like crystals and then transition to faster growth indicative of a morphological transformation. The measurements indicate that ice formed from solution droplets grows differently and has higher growth rates than ice formed from pure water droplets. We use these results to develop a power-law-based parameterization that captures the supersaturation and mass dependencies.more » « less
An official website of the United States government

