skip to main content

Title: Terrestrial glint seen from deep space: Oriented ice crystals detected from the Lagrangian point: ORIENTED ICE CRYSTALS SEEN FROM L1 POINT
Authors:
; ;
Award ID(s):
1639868
Publication Date:
NSF-PAR ID:
10083439
Journal Name:
Geophysical Research Letters
Volume:
44
Issue:
10
Page Range or eLocation-ID:
5197 to 5202
ISSN:
0094-8276
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A database (TAMUoic2019) of the scattering, absorption, and polarization properties of horizontally oriented hexagonal plates (HOPs) and horizontally oriented hexagonal columns (HOCs) at three wavelengths (355, 532, and 1064 nm) is developed for applications to radiative transfer simulations and remote sensing implementations involving oriented ice crystals. The maximum dimension of oriented ice crystals ranges from 50 to 10 000 μm in 165 discrete size bins. The database accounts for 94 incident directions. The single-scattering properties of oriented ice crystals are computed with the physical-geometric optics method (PGOM), which is consistent with the invariant-imbedding T-matrix method for particles with sizemore »parameters larger than approximately 100–150. Note that the accuracy of PGOM increases as the size parameter increases. PGOM computes the two-dimensional phase matrix as a function of scattering polar and azimuth angles, and the phase matrix significantly varies with the incident direction. To derive the bulk optical properties of ice clouds for practical radiative transfer applications, the optical properties of individual HOPs and HOCs are averaged over the probability distribution of the tilting angle of oriented ice crystals based on the use of the TAMUoic2019 database. Simulations of lidar signals associated with ice clouds based on the bulk optical properties indicate the importance of the fraction of oriented ice crystals and the probability distribution of the tilting angle. Simulations of optical phenomena caused by oriented ice crystals demonstrate that the computed single-scattering properties of oriented ice crystals are physically rational.

    « less
  2. Abstract Piezoelectric polymers hold great potential for various electromechanical applications, but only show low performance, with | d 33  | < 30 pC/N. We prepare a highly piezoelectric polymer ( d 33  = −62 pC/N) based on a biaxially oriented poly(vinylidene fluoride) (BOPVDF, crystallinity = 0.52). After unidirectional poling, macroscopically aligned samples with pure β crystals are achieved, which show a high spontaneous polarization ( P s ) of 140 mC/m 2 . Given the theoretical limit of P s,β  = 188 mC/m 2 for the neat β crystal, the high P s cannot be explained by the crystalline-amorphous two-phase model (i.e., Pmore »s,β  = 270 mC/m 2 ). Instead, we deduce that a significant amount (at least 0.25) of an oriented amorphous fraction (OAF) must be present between these two phases. Experimental data suggest that the mobile OAF resulted in the negative and high d 33 for the poled BOPVDF. The plausibility of this conclusion is supported by molecular dynamics simulations.« less