skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Facile Conversion of syn ‐[Fe IV (O)(TMC)] 2+ into the anti Isomer via Meunier's Oxo–Hydroxo Tautomerism Mechanism
Abstract Thesynandantiisomers of [FeIV(O)(TMC)]2+(TMC=tetramethylcyclam) represent the first isolated pair of synthetic non‐heme oxoiron(IV) complexes with identical ligand topology, differing only in the position of the oxo unit bound to the iron center. Both isomers have previously been characterized. Reported here is that thesynisomer [FeIV(Osyn)(TMC)(NCMe)]2+(2) converts into itsantiform [FeIV(Oanti)(TMC)(NCMe)]2+(1) in MeCN, an isomerization facilitated by water and monitored most readily by1H NMR and Raman spectroscopy. Indeed, when H218O is introduced to2, the nascent1becomes18O‐labeled. These results provide compelling evidence for a mechanism involving direct binding of a water moleculetransto the oxo atom in2with subsequent oxo–hydroxo tautomerism for its incorporation as the oxo atom of1. The nonplanar nature of the TMC supporting ligand makes this isomerization an irreversible transformation, unlike for their planar heme counterparts.  more » « less
Award ID(s):
1665391
PAR ID:
10083495
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
58
Issue:
7
ISSN:
1433-7851
Page Range / eLocation ID:
p. 1995-1999
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The hydroxylation of C–H bonds can be carried out by the high-valent CoIII,IV2(µ-O)2complex2asupported by the tetradentate tris(2-pyridylmethyl)amine ligand via a CoIII2(µ-O)(µ-OH) intermediate (3a). Complex3acan be independently generated either by H-atom transfer (HAT) in the reaction of2awith phenols as the H-atom donor or protonation of its conjugate base, the CoIII2(µ-O)2complex1a. Resonance Raman spectra of these three complexes reveal oxygen-isotope-sensitive vibrations at 560 to 590 cm−1associated with the symmetric Co–O–Co stretching mode of the Co2O2diamond core. Together with a Co•••Co distance of 2.78(2) Å previously identified for1aand2aby Extended X-ray Absorption Fine Structure (EXAFS) analysis, these results provide solid evidence for their “diamond core” structural assignments. The independent generation of3aallows us to investigate HAT reactions of2awith phenols in detail, measure the redox potential and pKaof the system, and calculate the O–H bond strength (DO–H) of3ato shed light on the C–H bond activation reactivity of2a. Complex3ais found to be able to transfer its hydroxyl ligand onto the trityl radical to form the hydroxylated product, representing a direct experimental observation of such a reaction by a dinuclear cobalt complex. Surprisingly, reactivity comparisons reveal2ato be 106-fold more reactive in oxidizing hydrocarbon C–H bonds than corresponding FeIII,IV2(µ-O)2and MnIII,IV2(µ-O)2analogs, an unexpected outcome that raises the prospects for using CoIII,IV2(µ-O)2species to oxidize alkane C–H bonds. 
    more » « less
  2. Abstract Catalysis ofO‐atom transfer (OAT) reactions is a characteristic of both natural (enzymatic) and synthetic molybdenum‐oxo and ‐peroxo complexes. These reactions can employ a variety of terminal oxidants, e. g. DMSO,N‐oxides, and peroxides, etc., but rarely molecular oxygen. Here we demonstrate the ability of a set of Schiff‐base‐MoO2complexes (cy‐salen)MoO2(cy‐salen=N,N’‐cyclohexyl‐1,2‐bis‐salicylimine) to catalyze the aerobic oxidation of PPh3. We also report the results of a DFT computational investigation of the catalytic pathway, including the identification of energetically accessible intermediates and transition states, for the aerobic oxidation of PMe3. Starting from the dioxo species, (cy‐salen)Mo(VI)O2(1), key reaction steps include: 1) associative addition of PMe3to an oxo‐O to give LMo(IV)(O)(OPMe3) (2); 2) OPMe3dissociation from2to produce mono‐oxo complex (cy‐salen)Mo(IV)O (3); 3) stepwise O2association with3via superoxo species (cy‐salen)Mo(V)(O)(η1‐O2) (4) to form the oxo‐peroxo intermediate (cy‐salen)Mo(VI)(O)(η2‐O2) (5); 4) theO‐transfer reaction of PMe3with oxo‐peroxo species5at the oxo‐group, rather than the peroxo unit leading, after OPMe3dissociation, to a monoperoxo species, (cy‐salen)Mo(IV)(η2‐O2) (7); and 5) regeneration of the dioxo complex (cy‐salen)Mo(VI)O2(1) from the monoperoxo triplet37or singlet17by a concerted, asynchronous electronic isomerization. An alternative pathway for recycling of the oxo‐peroxo species5to the dioxo‐Mo1via a bimetallic peroxo complex LMo(O)‐O−O‐Mo(O)L8is determined to be energetically viable, but is unlikely to be competitive with the primary pathway for aerobic phosphine oxidation catalyzed by1. 
    more » « less
  3. Aμ-oxo vanadium(V) dimeric complex, μ-oxido-bis[(2,2′-{[ethane-1,2-diylbis(azanediyl)]bis(methylene)}diphenolato)oxidovanadium(V)], [V2(C16H18N2O2)2O3] (1), was crystallized by slow evaporation from an ethanol solution. Theμ-oxo dimer crystallizes in the monoclinic space groupC2/cwhere the salan ligand1acoordinates to the vanadium center in a κ2N,κ2Ofashion, forming a distorted octahedral geometry. The bridging oxo ligand lies on a crystallographic twofold axis. The unit cell consists of four molecules of1that are linked by C—H...·πareneinteractions as well as intramolecular hydrogen bonding. 
    more » « less
  4. Abstract Reactivities of non‐heme iron(IV)‐oxo complexes are mostly controlled by the ligands. Complexes with tetradentate ligands such as [(TPA)FeO]2+(TPA=tris(2‐pyridylmethyl)amine) belong to the most reactive ones. Here, we show a fine‐tuning of the reactivity of [(TPA)FeO]2+by an additional ligand X (X=CH3CN, CF3SO3, ArI, and ArIO; ArI=2‐(tBuSO2)C6H4I) attached in solution and reveal a thus far unknown role of the ArIO oxidant. The HAT reactivity of [(TPA)FeO(X)]+/2+decreases in the order of X: ArIO > MeCN > ArI ≈ TfO. Hence, ArIO is not just a mere oxidant of the iron(II) complex, but it can also increase the reactivity of the iron(IV)‐oxo complex as a labile ligand. The detected HAT reactivities of the [(TPA)FeO(X)]+/2+complexes correlate with the Fe=O and FeO−H stretching vibrations of the reactants and the respective products as determined by infrared photodissociation spectroscopy. Hence, the most reactive [(TPA)FeO(ArIO)]2+adduct in the series has the weakest Fe=O bond and forms the strongest FeO−H bond in the HAT reaction. 
    more » « less
  5. The title complex, (1,4,7,10,13,16-hexaoxacyclooctadecane-1κ6O)(μ-oxalato-1κ2O1,O2:2κ2O1′,O2′)triphenyl-2κ3C-potassium(I)tin(IV), [KSn(C6H5)3(C2O4)(C12H24O6)] or K[18-Crown-6][(C6H5)3SnO4C2], was synthesized. The complex consists of a potassium cation coordinated to the six oxygen atoms of a crown ether molecule and the two oxygen atoms of the oxalatotriphenylstannate anion. It crystallizes in the monoclinic crystal system within the space groupP21. The tin atom is coordinated by one chelating oxalate ligand and three phenyl groups, forming acis-trigonal–bipyramidal geometry around the tin atom. The cations and anions form ion pairs, linked through carbonyl coordination to the potassium atoms. The crystal structure features C—H...O hydrogen bonds between the oxygen atoms of the oxalate group and the hydrogen atoms of the phenyl groups, resulting in an infinite chain structure extending alonga-axis direction. The primary inter-chain interactions are van der Waals forces. 
    more » « less