skip to main content


Title: Hagfish from the Cretaceous Tethys Sea and a reconciliation of the morphological–molecular conflict in early vertebrate phylogeny

Hagfish depart so much from other fishes anatomically that they were sometimes considered not fully vertebrate. They may represent: (i) an anatomically primitive outgroup of vertebrates (the morphology-based craniate hypothesis); or (ii) an anatomically degenerate vertebrate lineage sister to lampreys (the molecular-based cyclostome hypothesis). This systematic conundrum has become a prominent case of conflict between morphology- and molecular-based phylogenies. To date, the fossil record has offered few insights to this long-branch problem or the evolutionary history of hagfish in general, because unequivocal fossil members of the group are unknown. Here, we report an unequivocal fossil hagfish from the early Late Cretaceous of Lebanon. The soft tissue anatomy includes key attributes of living hagfish: cartilages of barbels, postcranial position of branchial apparatus, and chemical traces of slime glands. This indicates that the suite of characters unique to living hagfish appeared well before Cretaceous times. This new hagfish prompted a reevaluation of morphological characters for interrelationships among jawless vertebrates. By addressing nonindependence of characters, our phylogenetic analyses recovered hagfish and lampreys in a clade of cyclostomes (congruent with the cyclostome hypothesis) using only morphological data. This new phylogeny places the fossil taxon within the hagfish crown group, and resolved other putative fossil cyclostomes to the stem of either hagfish or lamprey crown groups. These results potentially resolve the morphological–molecular conflict at the base of the Vertebrata. Thus, assessment of character nonindependence may help reconcile morphological and molecular inferences for other major discords in animal phylogeny.

 
more » « less
NSF-PAR ID:
10083739
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
116
Issue:
6
ISSN:
0027-8424
Page Range / eLocation ID:
p. 2146-2151
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    The Cycadales are an ancient and charismatic group of seed plants. However, their morphological evolution in deep time is poorly understood. While molecular divergence time analyses estimate a Cretaceous origin for most major living cycad clades, much of the extant diversity is inferred to be a result of Neogene diversifications. This leads to long branches throughout the cycadalean phylogeny that, with few exceptions, have yet to be rectified by unequivocal fossil cycads.

    We report a permineralized pollen cone from the Campanian Holz Shale located in Silverado Canyon, CA, USA (c.80 million yr ago). This fossil was studied via serial sectioning, SEM, 3D reconstruction and phylogenetic analyses.

    Microsporophyll and pollen morphology indicate this cone is assignable toSkyttegaardia, a recently described genus based on disarticulated lignitized microsporophylls from the Early Cretaceous of Denmark. Data from this new species, including a simple cone architecture, anatomical details and vasculature organization, indicate cycadalean affinities forSkyttegaardia. Phylogenetic analyses support this assignment and recoverSkyttegaardiaas crown‐group Cycadales, nested within Zamiaceae.

    Our findings support a Cretaceous diversification for crown‐group Zamiaceae, which included the evolution of morphological divergent extinct taxa with unique traits that have yet to be widely identified in the fossil record.

     
    more » « less
  2. Jawed vertebrates (gnathostomes) have been the dominant lineage of deuterostomes for nearly three hundred fifty million years. Only a few lineages of jawless vertebrates remain in comparison. Composed of lampreys and hagfishes (cyclostomes), these jawless survivors are important systems for understanding the evolution of vertebrates. One focus of cyclostome research has been head skeleton development, as its evolution has been a driver of vertebrate morphological diversification. Recent work has identified hyaline-like cartilage in the oral cirri of the invertebrate chordate amphioxus, making cyclostomes critical for understanding the stepwise acquisition of vertebrate chondroid tissues. Our knowledge of cyclostome skeletogenesis, however, has lagged behind gnathostomes due to the difficulty of manipulating lamprey and hagfish embryos. In this review, we discuss and compare the regulation and histogenesis of cyclostome and gnathostome skeletal tissues. We also survey differences in skeletal morphology that we see amongst cyclostomes, as few elements can be confidently homologized between them. A recurring theme is the heterogeneity of skeletal morphology amongst living vertebrates, despite conserved genetic regulation. Based on these comparisons, we suggest a model through which these mesenchymal connective tissues acquired distinct histologies and that histological flexibility in cartilage existed in the last common ancestor of modern vertebrates. 
    more » « less
  3. Summary

    Lycopodiaceae are one of three surviving families of lycopsids, a lineage of vascular plants with a fossil history dating to at least the Early Devonian or perhaps the Late Silurian (c. 415 Ma). Many fossils have been linked to crown Lycopodiaceae, but the lack of well‐preserved material has hindered definitive recognition of this group in the paleobotanical record.

    New, exceptionally well‐preserved permineralized lycopsid fossils from the Early Cretaceous (125.6 ± 1.0 Ma) of Inner Mongolia, China, were examined in detail using acetate peel and micro‐computed tomography techniques. The anatomy of extant Lycopodiaceae was analyzed for comparison using fluorescence microscopy. Phylogenetic relationships of the new fossil to extant Lycopodiaceae were evaluated using parsimony and maximum likelihood analyses.

    Lycopodicaulis oellgaardiigen. et sp. nov. provides the earliest unequivocal and best‐documented evidence of crown Lycopodiaceae and Lycopodioideae, based on anatomically‐preserved fossil material.

    Recognition ofLycopodicaulisin Asia during the Early Cretaceous indicates the presence of crown Lycopodiaceae at this time, and striking similarities of stem anatomy with extant species provide a framework for the understanding of the interaction of branching and vascular anatomy in crown‐group lycopsids.

     
    more » « less
  4. Summary

    Cunoniaceae are important elements of rainforests across the Southern Hemisphere. Many of these flowering plants are considered Paleo‐Antarctic Rainforest Lineages that had a Gondwanan distribution since the Paleocene. Fossils of several modern genera within the family, such asCeratopetalum, have indicated biogeographical connections between South America and Australia in the Cenozoic.

    Here, we report a dramatic geographical range extension forCeratopetalum, and Cunoniaceae as a whole, based on two exceptionally preserved fossil winged fruits from Campanian (c. 82–80 Ma old) deposits on Sucia Island, Washington, USA. The fossils were studied using physical sectioning, light microscopy, micro‐computed tomography scanning and multiple phylogenetic analyses.

    The fossil fruits share diagnostic characters withCeratopetalumsuch as the presence of four to five persistent calyx lobes, a prominent nectary disk, persistent stamens, a semi‐inferior ovary and two persistent styles. Based on morphological comparisons with fruits of extant species and support from phylogenetic analyses, the fossils are assigned to a new speciesCeratopetalum suciensis.

    These fossils are the first unequivocal evidence of crown Cunoniaceae from the Cretaceous of North America, indicating a more complicated biogeographical history for this important Gondwanan family.

     
    more » « less
  5. Resolving the phylogenetic relationships among Paleocene mammals has been a longstanding goal in paleontology. Constructing an accurate and comprehensive phylogeny for Paleocene mammals is a worthwhile objective in itself, but it also provides a framework on which we can better understand the origin of placental mammals and the evolutionary processes underlying the diversification of mammals before, during, and after the end-Cretaceous mass extinction. More recently, a robust Palaeocene mammal phylogeny has become a much-coveted tool for reconciling discrepancies between morphological and molecular evidence for the phylogeny and diversification of Placentalia. Here, we present a novel phylogenetic dataset to test hypotheses regarding Paleocene mammal phylogeny and the origin and diversification of Placentalia. To date, our matrix combines phenomic data for 36 extant mammal species and 107 fossil species scored for 2540 morphological characters alongside 26 genes sequenced for 47 species. We utilized a reductive morphological scoring strategy in order to minimize assumptions and test hypotheses on homology. Multiple sequence alignments were performed in MEGA-X for each gene. We then analysed the data using Bayesian methods and explored the effects of different approaches. Relaxed clock analyses using a molecular constraint and an FBD prior are congruent with the diversification of many extant orders prior to the K-Pg boundary. Relaxed clocked total-evidence analyses (morphology and molecules) using an FBD prior resulted in older ages of diversification than those estimated by our relaxed clock molecular constraint model and previous molecular studies. Within Placentalia, our phylogenies provide support for the divergence of Atlantogenata (Afrotheria and Xenarthra) from Boreoeutheria (Euarchontoglires and Laurasiatheria). Among the Paleocene taxa, ‘condylarths’ are distributed along the base of Laurasiatheria with members of ‘Arctocyonidae’ recovered as sister taxa to Artiodactyla; enigmatic groups such as Pantodonta and Taeniodonta are recovered as crown placentals whereas Leptictida is not. Our Paleocene mammal phylogeny is a critical step toward better understanding placental mammal evolution. Ultimately, this work will facilitate the investigation of fundamental questions previously encumbered by the lack of a well-resolved phylogeny. 
    more » « less