Vertebrates have distinct tissues which are not present in invertebrate chordates nor other metazoans. The rise of these tissues also coincided with at least one round of whole-genome duplication as well as a suite of lineage-specific segmental duplications. Understanding whether novel genes lead to the origin and diversification of novel cell types, therefore, is of great importance in vertebrate evolution. Here we were particularly interested in the evolution of the vertebrate musculoskeletal system, the muscles and connective tissues that support a diversity of body plans. A major component of the musculoskeletal extracellular matrix (ECM) is fibrillar collagens, a gene family which has been greatly expanded upon in vertebrates. We thus asked whether the repertoire of fibrillar collagens in vertebrates reflects differences in the musculoskeletal system. To test this, we explored the diversity of fibrillar collagens in lamprey, a jawless vertebrate which diverged from jawed vertebrates (gnathostomes) more than five hundred million years ago and has undergone its own gene duplications. Some of the principal components of vertebrate hyaline cartilage are the fibrillar collagens type II and XI, but their presence in cartilage development across all vertebrate taxa has been disputed. We particularly emphasized the characterization of genes in the lamprey hyaline cartilage, testing if its collagen repertoire was similar to that in gnathostomes. Overall, we discovered thirteen fibrillar collagens from all known gene subfamilies in lamprey and were able to identify several lineage-specific duplications. We found that, while the collagen loci have undergone rearrangement, the Clade A genes have remained linked with the hox clusters, a phenomenon also seen in gnathostomes. While the lamprey muscular tissue was largely similar to that seen in gnathostomes, we saw considerable differences in the larval lamprey skeletal tissue, with distinct collagen combinations pertaining to different cartilage types. Our gene expression analyses were unable to identify type II collagen in the sea lamprey hyaline cartilage nor any other fibrillar collagen during chondrogenesis at the stages observed, meaning that sea lamprey likely no longer require these genes during early cartilage development. Our findings suggest that fibrillar collagens were multifunctional across the musculoskeletal system in the last common ancestor of vertebrates and have been largely conserved, but these genes alone cannot explain the origin of novel cell types.
more »
« less
Comparative Approaches in Vertebrate Cartilage Histogenesis and Regulation: Insights from Lampreys and Hagfishes
Jawed vertebrates (gnathostomes) have been the dominant lineage of deuterostomes for nearly three hundred fifty million years. Only a few lineages of jawless vertebrates remain in comparison. Composed of lampreys and hagfishes (cyclostomes), these jawless survivors are important systems for understanding the evolution of vertebrates. One focus of cyclostome research has been head skeleton development, as its evolution has been a driver of vertebrate morphological diversification. Recent work has identified hyaline-like cartilage in the oral cirri of the invertebrate chordate amphioxus, making cyclostomes critical for understanding the stepwise acquisition of vertebrate chondroid tissues. Our knowledge of cyclostome skeletogenesis, however, has lagged behind gnathostomes due to the difficulty of manipulating lamprey and hagfish embryos. In this review, we discuss and compare the regulation and histogenesis of cyclostome and gnathostome skeletal tissues. We also survey differences in skeletal morphology that we see amongst cyclostomes, as few elements can be confidently homologized between them. A recurring theme is the heterogeneity of skeletal morphology amongst living vertebrates, despite conserved genetic regulation. Based on these comparisons, we suggest a model through which these mesenchymal connective tissues acquired distinct histologies and that histological flexibility in cartilage existed in the last common ancestor of modern vertebrates.
more »
« less
- Award ID(s):
- 1656843
- PAR ID:
- 10379178
- Date Published:
- Journal Name:
- Diversity
- Volume:
- 13
- Issue:
- 9
- ISSN:
- 1424-2818
- Page Range / eLocation ID:
- 435
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Polyploidy or whole-genome duplication (WGD) is a major event that drastically reshapes genome architecture and is often assumed to be causally associated with organismal innovations and radiations. The 2R hypothesis suggests that two WGD events (1R and 2R) occurred during early vertebrate evolution. However, the timing of the 2R event relative to the divergence of gnathostomes (jawed vertebrates) and cyclostomes (jawless hagfishes and lampreys) is unresolved and whether these WGD events underlie vertebrate phenotypic diversification remains elusive. Here we present the genome of the inshore hagfish,Eptatretus burgeri. Through comparative analysis with lamprey and gnathostome genomes, we reconstruct the early events in cyclostome genome evolution, leveraging insights into the ancestral vertebrate genome. Genome-wide synteny and phylogenetic analyses support a scenario in which 1R occurred in the vertebrate stem-lineage during the early Cambrian, and 2R occurred in the gnathostome stem-lineage, maximally in the late Cambrian–earliest Ordovician, after its divergence from cyclostomes. We find that the genome of stem-cyclostomes experienced an additional independent genome triplication. Functional genomic and morphospace analyses demonstrate that WGD events generally contribute to developmental evolution with similar changes in the regulatory genome of both vertebrate groups. However, appreciable morphological diversification occurred only in the gnathostome but not in the cyclostome lineage, calling into question the general expectation that WGDs lead to leaps of bodyplan complexity.more » « less
-
Abstract As the only surviving lineages of jawless fishes, hagfishes and lampreys provide a crucial window into early vertebrate evolution1–3. Here we investigate the complex history, timing and functional role of genome-wide duplications4–7and programmed DNA elimination8,9in vertebrates in the light of a chromosome-scale genome sequence for the brown hagfishEptatretus atami. Combining evidence from syntenic and phylogenetic analyses, we establish a comprehensive picture of vertebrate genome evolution, including an auto-tetraploidization (1RV) that predates the early Cambrian cyclostome–gnathostome split, followed by a mid–late Cambrian allo-tetraploidization (2RJV) in gnathostomes and a prolonged Cambrian–Ordovician hexaploidization (2RCY) in cyclostomes. Subsequently, hagfishes underwent extensive genomic changes, with chromosomal fusions accompanied by the loss of genes that are essential for organ systems (for example, genes involved in the development of eyes and in the proliferation of osteoclasts); these changes account, in part, for the simplification of the hagfish body plan1,2. Finally, we characterize programmed DNA elimination in hagfish, identifying protein-coding genes and repetitive elements that are deleted from somatic cell lineages during early development. The elimination of these germline-specific genes provides a mechanism for resolving genetic conflict between soma and germline by repressing germline and pluripotency functions, paralleling findings in lampreys10,11. Reconstruction of the early genomic history of vertebrates provides a framework for further investigations of the evolution of cyclostomes and jawed vertebrates.more » « less
-
In the last decade, the CRISPR/Cas9 bacterial virus defense system has been adapted as a user-friendly, efficient, and precise method for targeted mutagenesis in eukaryotes. Though CRISPR/Cas9 has proven effective in a diverse range of organisms, it is still most often used to create mutant lines in lab-reared genetic model systems. However, one major advantage of CRISPR/Cas9 mutagenesis over previous gene targeting approaches is that its high efficiency allows the immediate generation of near-null mosaic mutants. This feature could potentially allow genotype to be linked to phenotype in organisms with life histories that preclude the establishment of purebred genetic lines; a group that includes the vast majority of vertebrate species. Of particular interest to scholars of early vertebrate evolution are several long-lived and slow-maturing fishes that diverged from two dominant modern lineages, teleosts and tetrapods, in the Ordovician, or before. These early-diverging or “basal” vertebrates include the jawless cyclostomes, cartilaginous fishes, and various non-teleost ray-finned fishes. In addition to occupying critical phylogenetic positions, these groups possess combinations of derived and ancestral features not seen in conventional model vertebrates, and thus provide an opportunity for understanding the genetic bases of such traits. Here we report successful use of CRISPR/Cas9 mutagenesis in one such non-teleost fish, sterlet Acipenser ruthenus , a small species of sturgeon. We introduced mutations into the genes Tyrosinase , which is needed for melanin production, and Sonic hedgehog , a pleiotropic developmental regulator with diverse roles in early embryonic patterning and organogenesis. We observed disruption of both loci and the production of consistent phenotypes, including both near-null mutants’ various hypomorphs. Based on these results, and previous work in lamprey and amphibians, we discuss how CRISPR/Cas9 F0 mutagenesis may be successfully adapted to other long-lived, slow-maturing aquatic vertebrates and identify the ease of obtaining and injecting eggs and/or zygotes as the main challenges.more » « less
-
Pritham, Ellen (Ed.)Abstract Transposable elements (TEs) comprise a major fraction of vertebrate genomes, yet little is known about their expression and regulation across tissues, and how this varies across major vertebrate lineages. We present the first comparative analysis integrating TE expression and TE regulatory pathway activity in somatic and gametic tissues for a diverse set of 12 vertebrates. We conduct simultaneous gene and TE expression analyses to characterize patterns of TE expression and TE regulation across vertebrates and examine relationships between these features. We find remarkable variation in the expression of genes involved in TE negative regulation across tissues and species, yet consistently high expression in germline tissues, particularly in testes. Most vertebrates show comparably high levels of TE regulatory pathway activity across gonadal tissues except for mammals, where reduced activity of TE regulatory pathways in ovarian tissues may be the result of lower relative germ cell densities. We also find that all vertebrate lineages examined exhibit remarkably high levels of TE-derived transcripts in somatic and gametic tissues, with recently active TE families showing higher expression in gametic tissues. Although most TE-derived transcripts originate from inactive ancient TE families (and are likely incapable of transposition), such high levels of TE-derived RNA in the cytoplasm may have secondary, unappreciated biological relevance.more » « less
An official website of the United States government

