skip to main content


Title: Accelerating changes in ice mass within Greenland, and the ice sheet’s sensitivity to atmospheric forcing

From early 2003 to mid-2013, the total mass of ice in Greenland declined at a progressively increasing rate. In mid-2013, an abrupt reversal occurred, and very little net ice loss occurred in the next 12–18 months. Gravity Recovery and Climate Experiment (GRACE) and global positioning system (GPS) observations reveal that the spatial patterns of the sustained acceleration and the abrupt deceleration in mass loss are similar. The strongest accelerations tracked the phase of the North Atlantic Oscillation (NAO). The negative phase of the NAO enhances summertime warming and insolation while reducing snowfall, especially in west Greenland, driving surface mass balance (SMB) more negative, as illustrated using the regional climate model MAR. The spatial pattern of accelerating mass changes reflects the geography of NAO-driven shifts in atmospheric forcing and the ice sheet’s sensitivity to that forcing. We infer that southwest Greenland will become a major future contributor to sea level rise.

 
more » « less
NSF-PAR ID:
10083740
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
116
Issue:
6
ISSN:
0027-8424
Page Range / eLocation ID:
p. 1934-1939
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Substantial marine, terrestrial, and atmospheric changes have occurred over the Greenland region during the last century. Several studies have documented record‐levels of Greenland Ice Sheet (GrIS) summer melt extent during the 2000s and 2010s, but relatively little work has been carried out to assess regional climatic changes in other seasons. Here, we focus on the less studied cold‐season (i.e., autumn and winter) climate, tracing the long‐term (1873–2013) variability of Greenland's air temperatures through analyses of coastal observations and model‐derived outlet glacier series and their linkages with North Atlantic sea ice, sea surface temperature (SST), and atmospheric circulation indices. Through a statistical framework, large amounts of west and south Greenland temperature variance (up tor2 ~ 50%) can be explained by the seasonally‐contemporaneous combination of the Greenland Blocking Index (GBI) and the North Atlantic Oscillation (NAO; hereafter the combination of GBI and NAO is termed GBI). Lagged and concomitant regional sea‐ice concentration (SIC) and the Atlantic Multidecadal Oscillation (AMO) seasonal indices account for small amounts of residual air temperature variance (r2 < ~10%) relative to the GBI. The correlations between GBI and cold‐season temperatures are predominantly positive and statistically‐significant through time, while regional SIC conditions emerge as a significant covariate from the mid‐20th century through the conclusion of the study period. The inclusion of the cold‐season Pacific Decadal Oscillation (PDO) in multivariate analyses bolsters the air temperature variance explained by the North Atlantic regional predictors, suggesting the remote, background climate state is important to long‐term Greenland temperature variability. These findings imply that large‐scale tropospheric circulation has a strong control on surface temperature over Greenland through dynamic and thermodynamic impacts and stress the importance of understanding the evolving two‐way linkages between the North Atlantic marine and atmospheric environment in order to more accurately predict Greenland seasonal climate variability and change through the 21st century.

     
    more » « less
  2. We present high resolution measurements of atmospheric methane (CH4) and nitrogen isotopic composition (d15N-N2) in the Greenland Ice Sheet Project Two (GISP2) Ice core. The data span Marine Isotope Stage 3, 13 to 50 thousand years (ka) before present. These datasets enhance our understanding of abrupt climate variability during the last glacial period, with a focus on Heinrich events 1 through 5. CH4 data were analyzed between 2014 and 2020 via an established wet extraction technique (Mitchell et al. 2013). Concentrations were determined via gas chromatography measurements on an Agilent 6890N and calibrated to the NOAA04 scale. d15N-N2 data were measured between 2017 and 2020 on a Finnigan MAT Delta XP via an established technique (Petrenko et al. 2006). The methane data allow for gas-phase synchronization of the GISP2 ice core to other polar ice cores from Greenland and Antarctica. The nitrogen isotopic composition data allow for reconstruction of abrupt Greenland surface climate variations. 
    more » « less
  3. Abstract

    Understanding how internal atmospheric variability affects Greenland ice sheet (GrIS) summertime melting would improve understanding of future sea level rise. We analyze the Community Earth System Model Large Ensemble (CESM‐LE) over 1951–2000 and 2051–2100. We find that internal variability dominates the forced response on short timescales (~20 years) and that the area impacted by internal variability grows in the future, connecting internal variability and climate change. Unlike prior studies, we do not assume specific patterns of internal variability to affect GrIS melting but derive them from maximum covariance analysis. We find that the North Atlantic Oscillation (NAO) is the major source of internal atmospheric variability associated with GrIS melt conditions in CESM‐LE and reanalysis, with the positive phase (NAO+) linked to widespread cooling over the ice sheet. CESM‐LE and CMIP5 project an increase in the frequency of NAO+ events, suggesting a negative feedback to the GrIS under future climate change.

     
    more » « less
  4. Abstract

    The mass loss of the Greenland Ice Sheet is nearly equally partitioned between a decrease in surface mass balance from enhanced surface melt and an increase in ice dynamics from the acceleration and retreat of its marine-terminating glaciers. Much uncertainty remains in the future mass loss of the Greenland Ice Sheet due to the challenges of capturing the ice dynamic response to climate change in numerical models. Here, we estimate the sea level contribution of the Greenland Ice Sheet over the 21st century using an ice-sheet wide, high-resolution, ice-ocean numerical model that includes surface mass balance forcing, thermal forcing from the ocean, and iceberg calving dynamics. The model is calibrated with ice front observations from the past eleven years to capture the recent evolution of marine-terminating glaciers. Under a business as usual scenario, we find that northwest and central west Greenland glaciers will contribute more mass loss than other regions due to ice front retreat and ice flow acceleration. By the end of century, ice discharge from marine-terminating glaciers will contribute 50 ± 20% of the total mass loss, or twice as much as previously estimated although the contribution from the surface mass balance increases towards the end of the century.

     
    more » « less
  5. Abstract

    To assess climate‐mediated terrestrial‐aquatic linkages in Arctic lakes and potential impacts on light attenuation and carbon cycling, we evaluated lake responses to climate drivers in two areas of west Greenland with differing climate patterns. We selected four lakes in a warmer, drier area to compare with four lakes from a cooler, wetter area proximal to the Greenland Ice Sheet. In June from 2013–2018, we measured epilimnetic water temperature, 1% depth of photosynthetically active radiation (PAR), dissolved organic carbon (DOC), specific ultraviolet absorbance (SUVA254), DOC‐normalized absorbance at 380 nm (a*380), and chlorophylla. Interannual coherence of 1% PAR and DOC was particularly high for lakes within the warmer, drier area. This coherence suggests forcing of Arctic lake features by a large‐scale driver, likely climate. Redundancy analysis showed that monthly average precipitation, winter North Atlantic Oscillation (NAO) index (NAOW), spring average air temperature, and spring average precipitation influenced the lake variables (p= 0.003, adj.R2= 0.58). In particular, monthly average precipitation contributed to increases in soil‐derived DOC quality metrics and chlorophyllaand decreased 1% PAR. Interannual changes in lake responses to climate drivers were more apparent in the warmer, drier area than the cooler, wetter area. The interannual lake responses within and between areas, associated with climate trends, suggest that with ongoing rapid climate change in the Arctic, there could be widespread impacts on key lake responses important for light attenuation and carbon cycling.

     
    more » « less