skip to main content


Title: The role of blocking circulation and emerging open water feedbacks on Greenland cold‐season air temperature variability over the last century
Abstract

Substantial marine, terrestrial, and atmospheric changes have occurred over the Greenland region during the last century. Several studies have documented record‐levels of Greenland Ice Sheet (GrIS) summer melt extent during the 2000s and 2010s, but relatively little work has been carried out to assess regional climatic changes in other seasons. Here, we focus on the less studied cold‐season (i.e., autumn and winter) climate, tracing the long‐term (1873–2013) variability of Greenland's air temperatures through analyses of coastal observations and model‐derived outlet glacier series and their linkages with North Atlantic sea ice, sea surface temperature (SST), and atmospheric circulation indices. Through a statistical framework, large amounts of west and south Greenland temperature variance (up tor2 ~ 50%) can be explained by the seasonally‐contemporaneous combination of the Greenland Blocking Index (GBI) and the North Atlantic Oscillation (NAO; hereafter the combination of GBI and NAO is termed GBI). Lagged and concomitant regional sea‐ice concentration (SIC) and the Atlantic Multidecadal Oscillation (AMO) seasonal indices account for small amounts of residual air temperature variance (r2 < ~10%) relative to the GBI. The correlations between GBI and cold‐season temperatures are predominantly positive and statistically‐significant through time, while regional SIC conditions emerge as a significant covariate from the mid‐20th century through the conclusion of the study period. The inclusion of the cold‐season Pacific Decadal Oscillation (PDO) in multivariate analyses bolsters the air temperature variance explained by the North Atlantic regional predictors, suggesting the remote, background climate state is important to long‐term Greenland temperature variability. These findings imply that large‐scale tropospheric circulation has a strong control on surface temperature over Greenland through dynamic and thermodynamic impacts and stress the importance of understanding the evolving two‐way linkages between the North Atlantic marine and atmospheric environment in order to more accurately predict Greenland seasonal climate variability and change through the 21st century.

 
more » « less
NSF-PAR ID:
10374986
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal of Climatology
Volume:
41
Issue:
S1
ISSN:
0899-8418
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The direct response of the cold-season atmospheric circulation to the Arctic sea ice loss is estimated from observed sea ice concentration (SIC) and an atmospheric reanalysis, assuming that the atmospheric response to the long-term sea ice loss is the same as that to interannual pan-Arctic SIC fluctuations with identical spatial patterns. No large-scale relationship with previous interannual SIC fluctuations is found in October and November, but a negative North Atlantic Oscillation (NAO)/Arctic Oscillation follows the pan-Arctic SIC fluctuations from December to March. The signal is field significant in the stratosphere in December, and in the troposphere and tropopause thereafter. However, multiple regressions indicate that the stratospheric December signal is largely due to concomitant Siberian snow-cover anomalies. On the other hand, the tropospheric January–March NAO signals can be unambiguously attributed to SIC variability, with an Iceland high approaching 45 m at 500 hPa, a 2°C surface air warming in northeastern Canada, and a modulation of blocking activity in the North Atlantic sector. In March, a 1°C northern Europe cooling is also attributed to SIC. An SIC impact on the warm Arctic–cold Eurasia pattern is only found in February in relation to January SIC. Extrapolating the most robust results suggests that, in the absence of other forcings, the SIC loss between 1979 and 2016 would have induced a 2°–3°C decade−1winter warming in northeastern North America and a 40–60 m decade−1increase in the height of the Iceland high, if linearity and perpetual winter conditions could be assumed.

     
    more » « less
  2. Abstract

    To assess climate‐mediated terrestrial‐aquatic linkages in Arctic lakes and potential impacts on light attenuation and carbon cycling, we evaluated lake responses to climate drivers in two areas of west Greenland with differing climate patterns. We selected four lakes in a warmer, drier area to compare with four lakes from a cooler, wetter area proximal to the Greenland Ice Sheet. In June from 2013–2018, we measured epilimnetic water temperature, 1% depth of photosynthetically active radiation (PAR), dissolved organic carbon (DOC), specific ultraviolet absorbance (SUVA254), DOC‐normalized absorbance at 380 nm (a*380), and chlorophylla. Interannual coherence of 1% PAR and DOC was particularly high for lakes within the warmer, drier area. This coherence suggests forcing of Arctic lake features by a large‐scale driver, likely climate. Redundancy analysis showed that monthly average precipitation, winter North Atlantic Oscillation (NAO) index (NAOW), spring average air temperature, and spring average precipitation influenced the lake variables (p= 0.003, adj.R2= 0.58). In particular, monthly average precipitation contributed to increases in soil‐derived DOC quality metrics and chlorophyllaand decreased 1% PAR. Interannual changes in lake responses to climate drivers were more apparent in the warmer, drier area than the cooler, wetter area. The interannual lake responses within and between areas, associated with climate trends, suggest that with ongoing rapid climate change in the Arctic, there could be widespread impacts on key lake responses important for light attenuation and carbon cycling.

     
    more » « less
  3. Abstract

    In situ observation networks and reanalyses products of the state of the atmosphere and upper ocean show well-defined, large-scale patterns of coupled climate variability on time scales ranging from seasons to several decades. We summarize these phenomena and their physics, which have been revealed by analysis of observations, by experimentation with uncoupled and coupled atmosphere and ocean models with a hierarchy of complexity, and by theoretical developments. We start with a discussion of the seasonal cycle in the equatorial tropical Pacific and Atlantic Oceans, which are clearly affected by coupling between the atmosphere and the ocean. We then discuss the tropical phenomena that only exist because of the coupling between the atmosphere and the ocean: the Pacific and Atlantic meridional modes, the El Niño–Southern Oscillation (ENSO) in the Pacific, and a phenomenon analogous to ENSO in the Atlantic. For ENSO, we further discuss the sources of irregularity and asymmetry between warm and cold phases of ENSO, and the response of ENSO to forcing. Fundamental to variability on all time scales in the midlatitudes of the Northern Hemisphere are preferred patterns of uncoupled atmospheric variability that exist independent of any changes in the state of the ocean, land, or distribution of sea ice. These patterns include the North Atlantic Oscillation (NAO), the North Pacific Oscillation (NPO), and the Pacific–North American (PNA) pattern; they are most active in wintertime, with a temporal spectrum that is nearly white. Stochastic variability in the NPO, PNA, and NAO force the ocean on days to interannual times scales by way of turbulent heat exchange and Ekman transport, and on decadal and longer time scales by way of wind stress forcing. The PNA is partially responsible for the Pacific decadal oscillation; the NAO is responsible for an analogous phenomenon in the North Atlantic subpolar gyre. In models, stochastic forcing by the NAO also gives rise to variability in the strength of the Atlantic meridional overturning circulation (AMOC) that is partially responsible for multidecadal anomalies in the North Atlantic climate known as the Atlantic multidecadal oscillation (AMO); observations do not yet exist to adequately determine the physics of the AMO. We review the progress that has been made in the past 50 years in understanding each of these phenomena and the implications for short-term (seasonal-to-interannual) climate forecasts. We end with a brief discussion of advances of things that are on the horizon, under the rug, and over the rainbow.

     
    more » « less
  4. Abstract

    Climate patterns over preceding years affect seasonal water and moisture conditions. The linkage between regional climate and local hydrology is challenging due to scale differences, both spatially and temporally. In this study, variance, correlation, and singular spectrum analyses were conducted to identify multiple hydroclimatic phases during which climate teleconnection patterns were related to hydrology of a small headwater basin in Idaho, USA. Combined field observations and simulations from a physically based hydrological model were used for this purpose. Results showed statistically significant relations between climate teleconnection patterns and hydrological fluxes in the basin, and climate indices explained up to 58% of hydrological variations. Antarctic Oscillation (AAO), North Atlantic Oscillation (NAO), and Pacific North America (PNA) patterns affected mountain hydrology, in that order, by decreasing annual runoff and rain on snow (ROS) runoff by 43% and 26% during a positive phase of NAO and 25% and 9% during a positive phase of PNA. AAO showed a significant association with the rainfall‐to‐precipitation ratio and explained 49% of its interannual variation. The runoff response was affected by the phase of climate variability indices and the legacy of past atmospheric conditions. Specifically, a switch in the phase of the teleconnection patterns of NAO and PNA caused a transition from wet to dry conditions in the basin. Positive AAO showed no relation with peak snow water equivalent and ROS runoff in the same year, but AAO in the preceding year explained 24 and 25% (p< 0.05) of their variations, suggesting that the past atmospheric patterns are equally important as the present conditions in affecting local hydrology. Areas sheltered from the wind and acted as a source for snow transport showed the lowest (40% below normal) ROS runoff generation, which was associated with positive NAO that explained 33% (p< 0.01) of its variation. The findings of this research highlighted the importance of hydroclimatic phases and multiple year variations that must be considered in hydrological forecasts, climate projections, and water resources planning.

     
    more » « less
  5. Using observations and reanalysis, we develop a robust statistical approach based on canonical correlation analysis (CCA) to explore the leading drivers of decadal and longer-term Mediterranean hydroclimate variability during the historical, half-year wet season. Accordingly, a series of CCA analyses are conducted with combined, multi-component large-scale drivers of Mediterranean precipitation and surface air temperatures. The results highlight the decadal-scale North Atlantic Oscillation (NAO) as the leading driver of hydroclimate variations across the Mediterranean basin. Markedly, the decadal variability of Atlantic-Mediterranean sea surface temperatures (SST), whose influence on the Mediterranean climate has so far been proposed as limited to the summer months, is found to enhance the NAO-induced hydroclimate response during the winter half-year season. As for the long-term, century scale trends, anthropogenic forcing, expressed in terms of the global SST warming (GW) signal, is robustly associated with basin-wide increase in surface air temperatures. Our analyses provide more detailed information than has heretofore been presented on the sub-seasonal evolution and spatial dependence of the large-scale climate variability in the Mediterranean region, separating the effects of natural variability and anthropogenic forcing, with the latter linked to a long-term drying of the region due to GW-induced local poleward shift of the subtropical dry zone. The physical understanding of these mechanisms is essential in order to improve model simulations and predic- tion of the decadal and longer hydroclimatic evolution in the Mediterranean area, which can help in developing adaptation strategies to mitigate the effect of climate variability and change on the vulnerable regional population. 
    more » « less