skip to main content


Title: The influence of diurnal snowmelt and transpiration on hillslope throughflow and stream response

Abstract. During spring, daily stream flow and groundwater dynamics in forested subalpine catchmentsare to a large extent controlled by hydrological processes thatrespond to the day–night energy cycle. Diurnal snowmelt and transpirationevents combine to induce pressure variations in the soil water storage thatare propagated to the stream. In headwater catchments these pressurevariations can account for a significant amount of the total pressure in thesystem and control the magnitude, duration, and timing of stream inflowpulses at daily scales, especially in low-flow systems. Changes in theradiative balance at the top of the snowpack can alter the diurnal hydrologicdynamics of the hillslope–stream system, with potential ecological andmanagement consequences.

We present a detailed hourly dataset of atmospheric, hillslope, andstreamflow measurements collected during one melt season from a semi-alpineheadwater catchment in western Montana, US. We use this dataset toinvestigate the timing, pattern, and linkages among snowmelt-dominatedhydrologic processes and assess the role of the snowpack, transpiration, andhillslopes in mediating daily movements of water from the top of the snowpackto local stream systems. We found that the amount of snowpack cold contentaccumulated during the night, which must be overcome every morning beforesnowmelt resumes, delayed water recharge inputs by up to 3h early in themelt season. These delays were further exacerbated by multi-day storms (coldfronts), which resulted in significant depletions in the soil and streamstorages. We also found that both diurnal snowmelt and transpiration signalsare present in the diurnal soil and stream storage fluctuations, although theindividual contributions of these processes are difficult to discern. Ouranalysis showed that the hydrologic response of the snow–hillslope–streamsystem is highly sensitive to atmospheric drivers at hourly scales and thatvariations in atmospheric energy inputs or other stresses are quicklytransmitted and alter the intensity, duration, and timing of snowmelt pulsesand soil water extractions by vegetation, which ultimately drive variationsin soil and stream water pressures.

 
more » « less
Award ID(s):
1644619
NSF-PAR ID:
10083922
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Hydrology and Earth System Sciences
Volume:
22
Issue:
8
ISSN:
1607-7938
Page Range / eLocation ID:
4295 to 4310
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Daily stream flow and groundwater dynamics in forested subalpine catchments during spring are to a large extent controlled by hydrological processes that respond to the day-night energy cycle. Diurnal snowmelt and transpiration events combine to induce pressure variations in the soil water storage that are propagated to the stream. In headwater catchments these pressure variations can account for a significant amount of the total pressure in the system and control the magnitude, duration, and timing of stream inflow pulses at daily scales, especially in low flow systems. Changes in the radiative balance at the top of the snowpack can alter the diurnal hydrologic dynamics of the hillslope-stream system with potential ecological and management consequences.

    We present a detailed hourly dataset of atmospheric, hillslope, and streamflow measurements collected during one melt season from a semi-alpine headwater catchment in western Montana, US. We use this dataset to investigate the timing, pattern, and linkages among snowmelt-dominated hydrologic processes and assess the role of the snowpack, transpiration, and hillslopes in mediating daily movements of water from the top of the snowpack to local stream systems. We found that the amount of snowpack cold content accumulated during the night, which must be overcome every morning before snowmelt resumes, delayed water recharge inputs by up to 3 hours early in the melt season. These delays were further exacerbated by multi-day storms (cold fronts), which resulted in significant depletions in the soil and stream storages. We also found that both diurnal snowmelt and transpiration signals are present in the diurnal soil and stream storage fluctuations, although the individual contributions of these processes is difficult to discern. Our analysis showed that the hydrologic response of the snow-hillslope-stream system is highly sensitive to atmospheric drivers at hourly scales, and that variations in atmospheric energy inputs or other stresses are quickly transmitted and alter the intensity, duration and timing of snowmelt pulses and soil water extractions by vegetation, which ultimately drive variations in soil and stream water pressures. 
    more » « less
  2. Abstract. Ecohydrological models are powerful tools to quantify the effects that independent fluxes may have on catchment storage dynamics. Here, we adapted the tracer-aided ecohydrological model, EcH2O-iso, for cold regions with the explicit conceptualization of dynamic soil freeze–thaw processes. We tested the model at the data-rich Krycklan site in northern Sweden with multi-criterion calibration using discharge, stream isotopes and soil moisture in three nested catchments. We utilized the model's incorporation of ecohydrological partitioning to evaluate the effect of soil frost on evaporation and transpiration water ages, and thereby the age of source waters. The simulation of stream discharge, isotopes, and soil moisture variability captured the seasonal dynamics at all three stream sites and both soil sites, with notable reductions in discharge and soil moisture during the winter months due to the development of the frost front. Stream isotope simulations reproduced the response to the isotopically depleted pulse of spring snowmelt. The soil frost dynamics adequately captured the spatial differences in the freezing front throughout the winter period, despite no direct calibration of soil frost to measured soil temperature. The simulated soil frost indicated a maximum freeze depth of 0.25 m below forest vegetation. Water ages of evaporation and transpiration reflect the influence of snowmelt inputs, with a high proclivity of old water (pre-winter storage) at the beginning of the growing season and a mix of snowmelt and precipitation (young water) toward the end of the summer. Soil frost had an early season influence of the transpiration water ages, with water pre-dating the snowpack mainly sustaining vegetation at the start of the growing season. Given the long-term expected change in the energy balance of northern climates, the approach presented provides a framework for quantifying the interactions of ecohydrological fluxes and waters stored in the soil and understanding how these may be impacted in future.

     
    more » « less
  3. The goal of this project is to characterize and constrain the physical mechanisms that control snowmelt delivery to streams in headwater basins. This project leverages new observation and modeling techniques to quantify and simulate the snow distribution, water holding capacity, snowmelt production, and dynamic flowpaths. This is achieved through state-of-the-science observation techniques including ground penetrating radar (GPR), Terrestrial LiDAR Scanning (TLS), global positioning system (GPS) instrumentation, a network of sensor nodes continuously measuring soil moisture and snow depth, and a weir to monitor streamflow. Finally, hydrologic modeling will be conducted with the Structure for Unified Multiple Modeling Alternatives (SUMMA) model to assess the impact of modeling decisions and the ability to simulate snowmelt dynamics. The overarching research question of this project is: How do snowpack liquid water storage and through-snow hydrologic flowpaths affect hillslope-stream connectivity, and how do these processes evolve throughout the snowmelt season? This research question will be investigated in a snow-dominated headwater catchment. This work will observe and simulate the spatially and temporally variable snowmelt season to complete the following project objectives: O1) Map the dynamics of catchment snow water equivalent (SWE) using TLS surveys, GPR surveys, a network of sensor nodes, and manual observations. O2) Monitor the spatial and temporal progression of snowpack liquid water content and transport using combined TLS and GPR surveys, automated GPS signal attenuation, soil moisture sensors, and catchment streamflow response. O3) Evaluate the skill of hydrologic models to simulate the observed dynamics of the snowpack, soil, and streamflow response by systematically analyzing multiple model representations of hydrologic processes and scaling behavior. The work builds upon decades of local research in hydrology, biogeochemistry, and ecological processes. 
    more » « less
  4. Abstract. Cold content is a measure of a snowpack's energy deficit and is a linear function of snowpack mass and temperature. Positive energy fluxes into a snowpack must first satisfy the remaining energy deficit before snowmelt runoff begins, making cold content a key component of the snowpack energy budget. Nevertheless, uncertainty surrounds cold content development and its relationship to snowmelt, likely because of a lack of direct observations. This work clarifies the controls exerted by air temperature, precipitation, and negative energy fluxes on cold content development and quantifies the relationship between cold content and snowmelt timing and rate at daily to seasonal timescales. The analysis presented herein leverages a unique long-term snow pit record along with validated output from the SNOWPACK model forced with 23 water years (1991–2013) of quality controlled, infilled hourly meteorological data from an alpine and subalpine site in the Colorado Rocky Mountains. The results indicated that precipitation exerted the primary control on cold content development at our two sites with snowfall responsible for 84.4 and 73.0% of simulated daily gains in the alpine and subalpine, respectively. A negative surface energy balance – primarily driven by sublimation and longwave radiation emission from the snowpack – during days without snowfall provided a secondary pathway for cold content development, and was responsible for the remaining 15.6 and 27.0% of cold content additions. Non-zero cold content values were associated with reduced snowmelt rates and delayed snowmelt onset at daily to sub-seasonal timescales, while peak cold content magnitude had no significant relationship to seasonal snowmelt timing. These results suggest that the information provided by cold content observations and/or simulations is most relevant to snowmelt processes at shorter timescales, and may help water resource managers to better predict melt onset and rate.

     
    more » « less
  5. Internal water storage within trees can be a critical reservoir that helps trees overcome both short- and long-duration environmental stresses. We monitored changes in internal tree water storage in a ponderosa pine on daily and seasonal scales using moisture probes, a dendrometer, and time-lapse electrical resistivity imaging (ERI). These data were used to investigate how patterns of in-tree water storage are affected by changes in sapflow rates, soil moisture, and meteorologic factors such as vapor pressure deficit. Measurements of xylem fluid electrical conductivity were constant in the early growing season while inverted sapwood electrical conductivity steadily increased, suggesting that increases in sapwood electrical conductivity did not result from an increase in xylem fluid electrical conductivity. Seasonal increases in stem electrical conductivity corresponded with seasonal increases in trunk diameter, suggesting that increased electrical conductivity may result from new growth. On the daily scale, changes in inverted sapwood electrical conductivity correspond to changes in sapwood moisture. Wavelet analyses indicated that lag times between inverted electrical conductivity and sapflow increased after storm events, suggesting that as soils wetted, reliance on internal water storage decreased, as did the time required to refill daily deficits in internal water storage. We found short time lags between sapflow and inverted electrical conductivity with dry conditions, when ponderosa pine are known to reduce stomatal conductance to avoid xylem cavitation. A decrease in diel amplitudes of inverted sapwood electrical conductivity during dry periods suggest that the ponderosa pine relied on internal water storage to supplement transpiration demands, but as drought conditions progressed, tree water storage contributions to transpiration decreased. Time-lapse ERI- and wavelet-analysis results highlight the important role internal tree water storage plays in supporting transpiration throughout a day and during periods of declining subsurface moisture. 
    more » « less