skip to main content


Title: Additive nanomanufacturing of metallic nanostructures through a kick-and-place approach (Conference Presentation)
We investigated a mechanism for quick release and transfer of gold nanoparticles (GNPs) from a soft substrate to another substrate under laser illumination. The heating of GNPs on a soft substrate with a continuous-wave laser causes a rapid thermal expansion of the substrate, which can be used to selectively release and place GNPs onto another surface. In-plane and out-of-plane nanostructures are successfully fabricated using this method. This rapid release-and-place process can be used for additive nonmanufacturing of metallic nanostructures under ambient conditions, which paves a way for affordable nanomanufacturing and enables a wide variety of applications in nanophotonics, ultrasensitive sensing, and nonlinear plasmonics.  more » « less
Award ID(s):
1761132
NSF-PAR ID:
10084051
Author(s) / Creator(s):
Date Published:
Journal Name:
SPIE Proceedings
Volume:
10722
Page Range / eLocation ID:
51
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We demonstrate an opto-thermomechanical (OTM) nanoprinting method that allows us not only to additively print nanostructures with sub-100 nm accuracy but also to correct printing errors for nanorepairing under ambient conditions. Different from other existing nanoprinting methods, this method works when a nanoparticle on the surface of a soft substrate is illuminated by a continuous-wave (cw) laser beam in a gaseous environment. The laser heats the nanoparticle and induces a rapid thermal expansion of the soft substrate. This thermal expansion can either release a nanoparticle from the soft surface for nanorepairing or transfer it additively to another surface in the presence of optical forces for nanoprinting with sub-100 nm accuracy. Details of the printing mechanism and parameters that affect the printing accuracy are investigated. This additive OTM nanoprinting technique paves the way for rapid and affordable additive manufacturing or 3D printing at the nanoscale under ambient conditions. 
    more » « less
  2. Abstract

    Fully soft bistable mechanisms have shown extensive applications ranging from soft robotics, wearable devices, and medical tools, to energy harvesting. However, the lack of design and fabrication methods that are easy and potentially scalable limits their further adoption into mainstream applications. Herein, a top–down planar approach is presented by introducing Kirigami‐inspired engineering combined with a pre‐stretching process. Using this method, Kirigami‐Pre‐stretched Substrate‐Kirigami trilayered precursors are created in a planar manner; upon release, the strain mismatch—due to the pre‐stretching of substrate—between layers will induce an out‐of‐plane buckling to achieve targeted 3D bistable structures. By combining experimental characterization, analytical modeling, and finite element simulation, the effect of the pattern size of Kirigami layers and pre‐stretching on the geometry and stability of resulting 3D composites is explored. In addition, methods to realize soft bistable structures with arbitrary shapes and soft composites with multistable configurations are investigated, which may encourage further applications. This method is demonstrated by using bistable soft Kirigami composites to construct two soft machines: (i) a bistable soft gripper that can gently grasp delicate objects with different shapes and sizes and (ii) a flytrap‐inspired robot that can autonomously detect and capture objects.

     
    more » « less
  3. Abstract

    This paper describes a tape nanolithography method for the rapid and economical manufacturing of flexible, wearable nanophotonic devices. This method involves the soft lithography of a donor substrate with air-void nanopatterns, subsequent deposition of materials onto the substrate surface, followed by direct taping and peeling of the deposited materials by an adhesive tape. Without using any sophisticated techniques, the nanopatterns, which are preformed on the surface of the donor substrate, automatically emerge in the deposited materials. The nanopatterns can then be transferred to the tape surface. By leveraging the works of adhesion at the interfaces of the donor substrate-deposited material-tape assembly, this method not only demonstrates sub-hundred-nanometer resolution in the transferred nanopatterns on an area of multiple square inches but also exhibits high versatility and flexibility for configuring the shapes, dimensions, and material compositions of tape-supported nanopatterns to tune their optical properties. After the tape transfer, the materials that remain at the bottom of the air-void nanopatterns on the donor substrate exhibit shapes complementary to the transferred nanopatterns on the tape surface but maintain the same composition, thus also acting as functional nanophotonic structures. Using tape nanolithography, we demonstrate several tape-supported plasmonic, dielectric, and metallo-dielectric nanostructures, as well as several devices such as refractive index sensors, conformable plasmonic surfaces, and Fabry-Perot cavity resonators. Further, we demonstrate tape nanolithography-assisted manufacturing of a standalone plasmonic nanohole film and its transfer to unconventional substrates such as a cleaved facet and the curved side of an optical fiber.

     
    more » « less
  4. Advances in solution-phase graphene patterning has provided a facile route for rapid, low-cost and scalable manufacturing of electrochemical devices, even on flexible substrates. While graphene possesses advantageous electrochemical properties of high surface area and fast heterogenous charge transport, these properties are attributed to the edge planes and defect sites, not the basal plane. Herein, we demonstrate enhancement of the electroactive nature of patterned solution-phase graphene by increasing the porosity and edge planes through the construction of a multidimensional architecture via salt impregnated inkjet maskless lithography (SIIML) and CO 2 laser annealing. Various sized macroscale pores (<25 to ∼250 μm) are patterned directly in the graphene surface by incorporating porogens ( i.e. , salt crystals) in the graphene ink which act as hard templates for pore formation and are later dissolved in water. Subsequently, microsized pores (∼100 nm to 2 μm in width) with edge plane defects are etched in the graphene lattice structure by laser annealing with a CO 2 laser, simultaneously improving electrical conductivity by nearly three orders of magnitude (sheet resistance decreases from >10 000 to ∼50 Ω sq −1 ). We demonstrate that this multidimensional porous graphene fabrication method can improve electrochemical device performance through design and manufacture of an electrochemical organophosphate biosensor that uses the enzyme acetylcholinesterase for detection. This pesticide biosensor exhibits enhanced sensitivity to acetylthiocholine compared to graphene without macropores (28.3 μA nM −1 to 13.3 μA nM −1 ) and when inhibited by organophosphate pesticides (paraoxon) has a wide linear range (10 nM to 500 nM), low limit of detection (0.6 nM), and high sensitivity (12.4 nA nM −1 ). Moreover, this fabrication method is capable of patterning complex geometries [ i.e. interdigitated electrodes (IDEs)] even on flexible surfaces as demonstrated by an IDE supercapacitor made of SIIML graphene on a heat sensitive polymer substrate. The supercapacitor demonstrates a high energy density of 0.25 mW h cm −3 at a power density of 0.3 W cm −3 . These electrochemical devices demonstrate the benefit of using SIIML and CO 2 laser annealing for patterning graphene electrodes with a multidimensional porous surface even on flexible substrates and is therefore a platform technology which could be applied to a variety of different biosensors and other electrochemical devices. 
    more » « less
  5. Nanostructured molybdenum disulfide (MoS2) thin films were grown on a nanohole-patterned silicon substrate using plasma-enhanced atomic layer deposition. A nanoscale hole-patterned silicon substrate was fabricated for the growth of MoS2 film using the self-assembly-based nanofabrication method. The nanoscale holes can significantly increase the surface area of the substrate while the formation and growth of nanostructures normally start at the surface of the substrate. Hydrogen sulfide (H2S) gas was used as the S source in the growth of molybdenum disulfide (MoS2) while molybdenum (V) chloride (MoCl5) powder was used as the Mo source. The MoS2 film had a stoichiometric ratio of 1 (Mo) to 2 (S), and had peaks of E12g and A1g, which represent the in-plane and out-plane vibration modes of the Mo–S bond, respectively. It was found that the MoS2 film grown in the nanoscale hole, especially at the wall of the hole, has more hexagonal-like structures due to the effects of nanoscale space confinement and the nanoscale interface although the film shows an amorphous structure. Post-growth high-temperature annealing ranging from 800 to 900 °C produced local crystalline structures in the film, which are compatible with those reported by other researchers. 
    more » « less