Abstract— In this study, we present continuous liquid metal printing (CLMP) to produce flexible and transparent indium tin oxide (ITO) layers compatible with plastic substrates with low glass transition temperatures. By leveraging the low melting point of an indium-tin (In-Sn) alloy, we achieve spontaneous two-dimensional (2D) oxide growth at low temperatures, following Cabrera-Mott (CM) oxidation kinetics. A robotically controlled roller deforms the molten alloys, depositing a thin native oxide (ITO) via van der Waals adhesion across large areas (approximately 1200 cm²) in mere seconds. The printed 2D ITO is highly crystalline with large plate-like grains with an average size of 55 nm. They demonstrate low resistivity (approximately 714 μΩ⋅cm) and transparency (>92% in visible light) with an optical bandgap of 3.71 eV. Mechanical testing reveals superior adhesion, 2X greater bendability, and 3X better scratch resistance of flexible 2D ITO. Finally, we demonstrate an application towards flexible transparent electrocardiogram electrodes based on flexible 2D ITO. 
                        more » 
                        « less   
                    
                            
                            Gate-tunable optical filter based on conducting oxide metasurface heterostructure
                        
                    
    
            A gate-tunable plasmonic optical filter incorporating a sub- wavelength patterned metal–insulator–metal metasurface heterostructure is proposed. An additional thin transparent conducting oxide (TCO) layer is embedded in the insulator layer to form a double metal–oxide-semiconductor configu- ration. Heavily n-doped indium tin oxide (ITO) is em- ployed as the TCO material, whose optical property can be electrically tuned by the formation of a thin active ep- silon-near-zero layer at the ITO–oxide interfaces. Full-wave electromagnetic simulations show that amplitude modula- tion and shift of transmission peak are achievable with 3–5 V applied bias, depending on the application. Moreover, the modulation strength and transmission peak shift increase with a thinner ITO layer. This work is an essential step toward a realization of next-generation compact photonic/ plasmonic integrated devices. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1752295
- PAR ID:
- 10084077
- Date Published:
- Journal Name:
- Optics letters
- Volume:
- 44
- Issue:
- 15
- ISSN:
- 1539-4794
- Page Range / eLocation ID:
- 3653-3656
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Oxide-metal-based hybrid materials have gained great research interest in recent years owing to their potential for multifunctionality, property coupling, and tunability. Specifically, oxide-metal hybrid materials in a vertically aligned nanocomposite (VAN) form could produce pronounced anisotropic physical properties, e.g. , hyperbolic optical properties. Herein, self-assembled HfO 2 -Au nanocomposites with ultra-fine vertically aligned Au nanopillars (as fine as 3 nm in diameter) embedded in a HfO 2 matrix were fabricated using a one-step self-assembly process. The film crystallinity and pillar uniformity can be obviously improved by adding an ultra-thin TiN-Au buffer layer during the growth. The HfO 2 -Au hybrid VAN films show an obvious plasmonic resonance at 480 nm, which is much lower than the typical plasmonic resonance wavelength of Au nanostructures, and is attributed to the well-aligned ultra-fine Au nanopillars. Coupled with the broad hyperbolic dispersion ranging from 1050 nm to 1800 nm in wavelength, and unique dielectric HfO 2 , this nanoscale hybrid plasmonic metamaterial presents strong potential for the design of future integrated optical and electronic switching devices.more » « less
- 
            Carbon is a common contaminant in oxide thin film semiconductors that can affect important properties such as the work function, surface chemistry, and electrical conductivity. In this work, carbon impurities in sputtered anatase titania (TiO2) and indium tin oxide (ITO) thin films were investigated using Raman and optical transmission spectroscopy. Annealing in a rough vacuum yielded carbon precipitates, which have characteristic disordered and graphitic carbon Raman signatures. Irradiation by a 532 nm laser in the ambient air was effective in removing the carbon precipitates; in the case of ITO, no trace of carbon could be observed in the Raman spectra following irradiation. The combination of vacuum annealing and laser irradiation could provide a practical means for reducing carbon impurities in thin films.more » « less
- 
            Indium tin oxide (ITO) coated Willow glass is an excellent substrate for roll-to-roll manufacturing of perovskite solar cells (PSCs) but can have large variability in its optical and electrical properties. Photonic curing uses intense light pulses instead of heat to process materials and has the potential to facilitate faster processing speeds in roll-to-roll manufacturing to upscale the production of PSCs. The substrate materials’ properties play an integral role in the photonic curing outcome. Here, we present the effect of ITO transmission on the photonic curing of NiO sol-gel precursors into metal oxide and consequently the PSC performance.more » « less
- 
            Abstract Photonic integrated circuits require various optical materials with versatile optical properties and easy on‐chip device integration. To address such needs, a well‐designed nanoscale metal‐oxide metamaterial, that is, plasmonic Au nanoparticles embedded in nonlinear LiNbO3(LNO) matrix, is demonstrated with tailorable optical response. Specifically, epitaxial and single‐domain LNO thin films with tailored Au nanoparticle morphologies (i.e., various nanoparticle sizes and densities), are grown by a pulsed laser deposition method. The optical measurement presents obvious surface plasmon resonance and dramatically varied complex dielectric function because of the embedded Au nanoparticles, and its response can be well tailored by varying the size and density of Au nanoparticles. An optical waveguide structure based on the thin film stacks of a‐Si on SiO2/Au‐LNO is fabricated and exhibits low optical dispersion with an optimized evanescent field staying in the LNO‐Au active layer. The hybrid Au‐LNO metamaterial thin films provide a novel platform for tunable optical materials and their future on‐chip integrations in photonic‐based integrated circuits.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    