skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 11, 2025

Title: Scalable Fabrication of Flexible Two-Dimensional Indium Tin Oxide via Continuous Liquid Metal Printing
Abstract— In this study, we present continuous liquid metal printing (CLMP) to produce flexible and transparent indium tin oxide (ITO) layers compatible with plastic substrates with low glass transition temperatures. By leveraging the low melting point of an indium-tin (In-Sn) alloy, we achieve spontaneous two-dimensional (2D) oxide growth at low temperatures, following Cabrera-Mott (CM) oxidation kinetics. A robotically controlled roller deforms the molten alloys, depositing a thin native oxide (ITO) via van der Waals adhesion across large areas (approximately 1200 cm²) in mere seconds. The printed 2D ITO is highly crystalline with large plate-like grains with an average size of 55 nm. They demonstrate low resistivity (approximately 714 μΩ⋅cm) and transparency (>92% in visible light) with an optical bandgap of 3.71 eV. Mechanical testing reveals superior adhesion, 2X greater bendability, and 3X better scratch resistance of flexible 2D ITO. Finally, we demonstrate an application towards flexible transparent electrocardiogram electrodes based on flexible 2D ITO.  more » « less
Award ID(s):
2202501
PAR ID:
10604922
Author(s) / Creator(s):
; ;
Publisher / Repository:
2024 IEEE International Flexible Electronics Technology Conference (IFETC)
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Transparent conductive oxides (TCOs) are a high-performance material system that could enable new wearable sensors and electronics, but traditional fabrication methods face scalability and performance challenges. In this work, we utilize liquid metal printing to produce ultrathin two-dimensional (2D) indium tin oxide (ITO) films with superior microstructural, optical, and electrical properties compared to conventional techniques. We investigate the dynamics of grain growth and its influence on conductivity and the optical properties of 2D ITO, demonstrating the tunability through annealing and multilayer deposition. Additionally, we develop Au-decorated transparent electrodes, showcasing their adhesion and flexibility, low contact impedance, and biocompatibility. Leveraging the transparency of these electrodes, we enable enhanced simultaneous multimodal biosignal acquisition by integrating biopotential-based methods, such as electrocardiogram (ECG) or bioimpedance sensing (e.g., impedance plethysmography, IPG), with optical modalities like photoplethysmography (PPG). This study establishes CLMP-fabricated flexible 2D TCOs as a versatile platform for advanced bioelectronic systems and multimodal diagnostics. 
    more » « less
  2. Transparent quasi-interdigitated electrodes (t-QIDEs) were produced by replacing the opaque components of existing QIDEs with indium tin oxide (ITO). We demonstrate their application in the first semitransparent back-contact perovskite solar cell. A device with a VOC of 0.88 V and a JSC of 5.6 mA cm–2 produced a modest 1.7% efficiency. The use of ITO allows for illumination of the device from front and rear sides, resembling a bifacial solar cell, both of which yield comparable efficiencies. Coupled optoelectronic simulations reveal this architecture may achieve power conversion efficiencies of up to 11.5% and 13.3% when illuminated from the front and rear side, respectively, using a realistic quality of perovskite material. 
    more » « less
  3. null (Ed.)
    A microsecond time-scale photonic lift-off (PLO) process was used to fabricate mechanically flexible photovoltaic devices (PVs) with a total thickness of less than 20 μm. PLO is a rapid, scalable photothermal technique for processing extremely thin, mechanically flexible electronic and optoelectronic devices. PLO is also compatible with large-area devices, roll-to-roll processing, and substrates with low temperature compatibility. As a proof of concept, PVs were fabricated using CuInSe2 nanocrystal ink deposited at room temperature under ambient conditions on thin, plastic substrates heated to 100 °C. It was necessary to prevent cracking of the brittle top contact layer of indium tin oxide (ITO) during lift-off, either by using a layer of silver nanowires (AgNW) as the top contact or by infusing the ITO layer with AgNW. This approach could generally be used to improve the mechanical versatility of current collectors in a variety of ultrathin electronic and optoelectronic devices requiring a transparent conductive contact layer. 
    more » « less
  4. null (Ed.)
    Integrative neural interfaces combining neurophysiology and optogenetics with neural imaging provide numerous opportunities for neuroscientists to study the structure and function of neural circuits in the brain. Such a comprehensive interface demands miniature electrode arrays with high transparency, mechanical flexibility, electrical conductivity, and biocompatibility. Conventional transparent microelectrodes made of a single material, such as indium tin oxide (ITO), ultrathin metals, graphene and poly-(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS), hardly possess the desired combination of those properties. Herein, ultra-flexible, highly conductive and fully transparent microscale electrocorticogram (μECoG) electrode arrays made of a PEDOT:PSS–ITO–Ag–ITO assembly are constructed on thin parylene C films. The PEDOT:PSS–ITO–Ag–ITO assembly achieves a maximum ∼14% enhancement in light transmission over a broad spectrum (350–650 nm), a significant reduction in electrochemical impedance by 91.25%, and an increase in charge storage capacitance by 1229.78 μC cm −2 . Peeling, bending, and Young's modulus tests verify the enhanced mechanical flexibility and robustness of the multilayer assembly. The μECoG electrodes enable electrical recordings with high signal-to-noise ratios (SNRs) (∼35–36 dB) under different color photostimulations, suggesting that the electrodes are resilient to photon-induced artifacts. In vivo animal experiments confirm that our array can successfully record light-evoked ECoG oscillations from the primary visual cortex (V1) of an anesthetized rat. 
    more » « less
  5. Abstract Due to its transparent and conductive nature, indium tin oxide (ITO) offers substantial benefits in several industries, such as thin film transistors, displays, and nanophotonics. Previous studies on ultrathin ITO have so far focused on its electrical properties but have neglected the technologically important epsilon-near-zero (ENZ) optical features due to the difficulty of extracting the refractive index and the thickness-dependent degradation of the optical properties. Here, we demonstrate a complementary metal-oxide-semiconductor (CMOS)-compatible deposition procedure for sub-percolation thickness (below 4 nm) ITO using a dry-etch assisted radiofrequency magnetron sputtering technique that yields continuous films in a precisely controlled manner. Through interface engineering and post-deposition annealing optimization, we show that these ITO films can retain high carrier mobility (43 cm2V−1s−1) while achieving a tunable near-zero-index (NZI) regime throughout the telecommunications band using a Berreman-assisted optical characterization technique. Our result opens the possibility of efficiently designing ENZ/NZI materials at the nanoscale using a robust fabrication approach for applications in nanophotonics. 
    more » « less