skip to main content


Title: QOI: Assessing Participation in Threat Information Sharing
We introduce the notion of Quality of Indicator (QoI) to assess the level of contribution by participants in threat intelligence sharing. We exemplify QoI by metrics of the correctness, relevance, utility, and uniqueness of indicators. We build a system that extrapolates the metrics using a machine learning process over a reference set of indicators. We compared these results against a model that only considers the volume of information as a metric for contribution, and unveiled various observations, including the ability to spot low-quality contributions that are synonymous to free-riding.  more » « less
Award ID(s):
1809000 1643249
NSF-PAR ID:
10084228
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
2018 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2018
Page Range / eLocation ID:
6951 to 6955
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A major challenge in mobile crowdsensing applications is the generation of false (or spam) contributions resulting from selfish and malicious behaviors of users, or wrong perception of an event. Such false contributions induce loss of revenue owing to undue incentivization, and also affect the operational reliability of the applications. To counter these problems, we propose an event-trust and user-reputation model, called QnQ, to segregate different user classes such as honest, selfish, or malicious. The resultant user reputation scores, are based on both `quality' (accuracy of contribution) and `quantity' (degree of participation) of their contributions. Specifically, QnQ exploits a rating feedback mechanism for evaluating an event-specific expected truthfulness, which is then transformed into a robust quality of information (QoI) metric to weaken various effects of selfish and malicious user behaviors. Eventually, the QoIs of various events in which a user has participated are aggregated to compute his reputation score, which in turn is used to judiciously disburse user incentives with a goal to reduce the incentive losses of the CS application provider. Subsequently, inspired by cumulative prospect theory (CPT), we propose a risk tolerance and reputation aware trustworthy decision making scheme to determine whether an event should be published or not, thus improving the operational reliability of the application. To evaluate QnQ experimentally, we consider a vehicular crowdsensing application as a proof-of-concept. We compare QoI performance achieved by our model with Jøsang's belief model, reputation scoring with Dempster-Shafer based reputation model, and operational (decision) accuracy with expected utility theory. Experimental results demonstrate that QnQ is able to better capture subtle differences in user behaviors based on both quality and quantity, reduces incentive losses, and significantly improves operational accuracy in presence of rogue contributions 
    more » « less
  2. Fecal indicator bacteria currently used for water quality monitoring inadequately represent viral fate in water systems, motivating the development of viral fecal pollution indicators. Molecular viral fecal pollution indicators such as crAssphage and pepper mild mottle virus (PMMoV) have emerged as leading viral fecal pollution indicator candidates due to ease and speed of measurement and target specificity. Elucidating the fate of molecular viral fecal indicators in water systems is necessary to facilitate their development, broader adoption, and ultimately their association with infectious risk. A significant mechanism controlling the behavior of viral indicators in environmental waters is association with particles, as this would dictate removal via settling and transport characteristics. In this study, we investigated the particle associations of six molecular fecal pollution targets (crAssphage, PMMoV, adenovirus, human polyomavirus, norovirus, HF183/BacR287) in wastewater using a cascade filtration approach. Four different filters were employed representing large settleable particles (180 μm), larger (20 μm) and smaller suspended particles (0.45 μm), and non-settleable particles (0.03 μm). All molecular targets were detected on all particle size fractions; however, all targets had their highest concentrations on the 0.45 μm (percent contribution ranging from 40% to 80.5%) and 20 μm (percent contribution ranging from 3.9% to 39.4%) filters. The association of viral fecal pollution targets with suspended particles suggests that particle association will dictate transport in environmental waters and that sample concentration approaches based upon particle collection will be effective for these targets. 
    more » « less
  3. null (Ed.)
    Background Cardiovascular disease (CVD) disparities are a particularly devastating manifestation of health inequity. Despite advancements in prevention and treatment, CVD is still the leading cause of death in the United States. Additionally, research indicates that African American (AA) and other ethnic-minority populations are affected by CVD at earlier ages than white Americans. Given that AAs are the fastest-growing population of smartphone owners and users, mobile health (mHealth) technologies offer the unparalleled potential to prevent or improve self-management of chronic disease among this population. Objective To address the unmet need for culturally tailored primordial prevention CVD–focused mHealth interventions, the MOYO app was cocreated with the involvement of young people from this priority community. The overall project aims to develop and evaluate the effectiveness of a novel smartphone app designed to reduce CVD risk factors among urban-AAs, 18-29 years of age. Methods The theoretical underpinning will combine the principles of community-based participatory research and the agile software development framework. The primary outcome goals of the study will be to determine the usability, acceptability, and functionality of the MOYO app, and to build a cloud-based data collection infrastructure suitable for digital epidemiology in a disparity population. Changes in health-related parameters over a 24-week period as determined by both passive (eg, physical activity levels, sleep duration, social networking) and active (eg, use of mood measures, surveys, uploading pictures of meals and blood pressure readings) measures will be the secondary outcome. Participants will be recruited from a majority AA “large city” school district, 2 historically black colleges or universities, and 1 urban undergraduate college. Following baseline screening for inclusion (administered in person), participants will receive the beta version of the MOYO app. Participants will be monitored during a 24-week pilot period. Analyses of varying data including social network dynamics, standard metrics of activity, percentage of time away from a given radius of home, circadian rhythm metrics, and proxies for sleep will be performed. Together with external variables (eg, weather, pollution, and socioeconomic indicators such as food access), these metrics will be used to train machine-learning frameworks to regress them on the self-reported quality of life indicators. Results This 5-year study (2015-2020) is currently in the implementation phase. We believe that MOYO can build upon findings of classical epidemiology and longitudinal studies like the Jackson Heart Study by adding greater granularity to our knowledge of the exposures and behaviors that affect health and disease, and creating a channel for outreach capable of launching interventions, clinical trials, and enhancements of health literacy. Conclusions The results of this pilot will provide valuable information about community cocreation of mHealth programs, efficacious design features, and essential infrastructure for digital epidemiology among young AA adults. International Registered Report Identifier (IRRID) DERR1-10.2196/16699 
    more » « less
  4. Since the emergence of middle schools as distinct educational settings in the 1960s, proponents of the model have advocated for structures and approaches that best meet the particular developmental needs of young adolescents. Middle school researchers have developed frameworks of best practices for schools that have been widely, if not uniformly, adopted. However, there is a paucity of large-scale quantitative research on the efficacy of such best practices. In this study we used state-level administrative data from Texas to estimate the school-level contribution to standardized test scores in math and language arts, along with absenteeism. We then regressed these value-added quantities on indicators of middle school structures, along with research-supported predictors of school efficacy. Results showed that schools with fewer classes in the school day and higher quality teachers performed better, among other indicators. Findings from models using the campus contribution to absenteeism were similar. These results indicate that while elements of the middle school model may help transform individual schools, the equitable distribution of resources and the undoing of de facto segregation are vital to the success of all young adolescents. 
    more » « less
  5. Abstract

    The Columbia River Basin is a complex social‐ecological system, spanning political, legal, socio‐economic, geographic, and biophysical boundaries. Outreach to others in social networks develops fundamental communications needed for sustainable collaborations in adaptive management. However, operationalizing and comparing measures of social processes and outcome success in biophysical indicators remains challenging for resource managers. Using survey‐based research, we examined the interactions for water resource governance of five Columbia River reservoir basins in the northwestern US and Canada: Lakes Chelan, Roosevelt, Pend Oreille, Koocanusa, and člq'etkw (Flathead). Respondents included: water resource professionals working for Tribes/First Nations, federal, state, or provincial departments in water quality and/or fisheries, and people who engage in the networks on behalf of area businesses, government offices, public services, non‐profit organizations, and other entities. Perceived social process metrics in these governance networks included the levels of collaboration and inclusiveness, common goals, common strategies, identifying issues, implementing action, and the adequacy of available scientific data. We evaluated social measures relative to participant‐reported changes in physical lake health indicators. Qualitative data‐enhanced understanding of basin‐specific differences. Correlations of social by ecological measures varied widely between basins. Even moderate to strong functionality parameters did not scale well from individual to cross‐basin levels, as many correlations vanished with data aggregated. However, data analysis at the basin scale revealed important variability across the region in scope and governance functionality. Process indicators such as identifying issues and implementing action yielded stronger relationships for 10‐year horizons than for 2 years, reflecting the lag‐time in resource action.

     
    more » « less