skip to main content


Title: Typical physics Ph.D. admissions criteria limit access to underrepresented groups but fail to predict doctoral completion
This study aims to understand the effectiveness of typical admissions criteria in identifying students who will complete the Physics Ph.D. Multivariate statistical analysis of roughly one in eight physics Ph.D. students from 2000 to 2010 indicates that the traditional admissions metrics of undergraduate grade point average (GPA) and the Graduate Record Examination (GRE) Quantitative, Verbal, and Physics Subject Tests do not predict completion as effectively admissions committees presume. Significant associations with completion were found for undergraduate GPA in all models and for GRE Quantitative in two of four studied models; GRE Physics and GRE Verbal were not significant in any model. It is notable that completion changed by less than 10% for U.S. physics major test takers scoring in the 10th versus 90th percentile on the Quantitative test. Aside from these limitations in predicting Ph.D. completion overall, overreliance on GRE scores in admissions processes also selects against underrepresented groups.  more » « less
Award ID(s):
1649297 1834540 1633275
NSF-PAR ID:
10084262
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
5
Issue:
1
ISSN:
2375-2548
Page Range / eLocation ID:
eaat7550
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Using analysis of variance on a sample consisting of 1,499 US students across 21 US PhD programs, we show that there is no significant difference in the time it takes US male and female physics PhD students to complete their degree programs. This result comes in spite of a statistically significant 18 percentile point gap in median GRE-P scores between genders. Additional analyses reveal that there is no statistical difference between US students reported as White, Black/Hispanic/Multiracial/Native American, and Asian. Expanding our sample to also include 1,143 Non-US students, we find a small but significant effect of citizenship status on time to PhD completion where the average time for Non-US students to complete a physics PhD is about two months less than their US student counterparts. These results show that in spite of known gaps in standardized admissions exams between genders, these differences are not reflected in subsequent graduate school performance. Our findings reinforce the need for graduate admissions committees to go beyond quantitative metrics and conduct a holistic assessment of an applicant's potential to perform research effectively and to earn a PhD. 
    more » « less
  2. We provide statistical measures and additional analyses showing that our original analyses were sound. We use a generalized linear mixed model to account for program-to-program differences with program as a random effect without stratifying with tier and found the GRE-P (Graduate Record Examination physics test) effect is not different from our previous findings, thereby alleviating concern of collider bias. Variance inflation factors for each variable were low, showing that multicollinearity was not a concern. We show that range restriction is not an issue for GRE-P or GRE-V (GRE verbal), and only a minor issue for GRE-Q (GRE quantitative). Last, we use statistical measures of model quality to show that our published models are better than or equivalent to several alternates. 
    more » « less
  3. The use of the Physics GRE in graduate admissions has gained considerable attention in recent years. While studies have shown the problematic nature of the exam quantitatively, it is time that student experiences were also included in the discussion. In this qualitative study, we interviewed 69 current graduate physics and astronomy students about their process of deciding where to apply to graduate school. Physics GRE requirements played a substantial role in this decision, with 48 students mentioning the test as part of their process to narrow programs down to a personalized short-list. Participants discussed potential barriers (e.g., financial and travel) that affected some students, but not others, which created an unequal playing field for grad school applicants. Secondly, while the participants noticed a shift towards more departments having "optional'' GRE language, female student participants still felt the need to take and submit their Physics GRE scores, while male student participants truly saw "optional'' as optional. These results suggest that graduate programs requiring the Physics GRE are doing more than asking prospective graduate students to simply take a physics test, and that the use of 'optional' requirement language may be inadvertently disadvantaging the very students that they are trying to recruit. 
    more » « less
  4. There are significant disparities between the conferring of science, technology, engineering, and mathematics (STEM) bachelor’s degrees to minoritized groups and the number of STEM faculty that represent minoritized groups at four-year predominantly White institutions (PWIs). Studies show that as of 2019, African American faculty at PWIs have increased by only 2.3% in the last 20 years. This study explores the ways in which this imbalance affects minoritized students in engineering majors. Our research objective is to describe the ways in which African American students navigate their way to success in an engineering program at a PWI where the minoritized faculty representation is less than 10%. In this study, we define success as completion of an undergraduate degree and matriculation into a Ph.D. program. Research shows that African American students struggle with feeling like the “outsider within” in graduate programs and that the engineering culture can permeate from undergraduate to graduate programs. We address our research objective by conducting interviews using navigational capital as our theoretical framework, which can be defined as resilience, academic invulnerability, and skills. These three concepts come together to denote the journey of an individual as they achieve success in an environment not created with them in mind. Navigational capital has been applied in education contexts to study minoritized groups, and specifically in engineering education to study the persistence of students of color. Research on navigational capital often focuses on how participants acquire resources from others. There is a limited focus on the experience of the student as the individual agent exercising their own navigational capital. Drawing from and adapting the framework of navigational capital, this study provides rich descriptions of the lived experiences of African American students in an engineering program at a PWI as they navigated their way to academic success in a system that was not designed with them in mind. This pilot study took place at a research-intensive, land grant PWI in the southeastern United States. We recruited two students who identify as African American and are in the first year of their Ph.D. program in an engineering major. Our interview protocol was adapted from a related study about student motivation, identity, and sense of belonging in engineering. After transcribing interviews with these participants, we began our qualitative analysis with a priori coding, drawing from the framework of navigational capital, to identify the experiences, connections, involvement, and resources the participants tapped into as they maneuvered their way to success in an undergraduate engineering program at a PWI. To identify other aspects of the participants’ experiences that were not reflected in that framework, we also used open coding. The results showed that the participants tapped into their navigational capital when they used experiences, connections, involvement, and resources to be resilient, academically invulnerable, and skillful. They learned from experiences (theirs or others’), capitalized on their connections, positioned themselves through involvement, and used their resources to achieve success in their engineering program. The participants identified their experiences, connections, and involvement. For example, one participant who came from a blended family (African American and White) drew from the experiences she had with her blended family. Her experiences helped her to understand the cultures of Black and White people. She was able to turn that into a skill to connect with others at her PWI. The point at which she took her familial experiences to use as a skill to maneuver her way to success at a PWI was an example of her navigational capital. Another participant capitalized on his connections to develop academic invulnerability. He was able to build his connections by making meaningful relationships with his classmates. He knew the importance of having reliable people to be there for him when he encountered a topic he did not understand. He cultivated an environment through relationships with classmates that set him up to achieve academic invulnerability in his classes. The participants spoke least about how they used their resources. The few mentions of resources were not distinct enough to make any substantial connection to the factors that denote navigational capital. The participants spoke explicitly about the PWI culture in their engineering department. From open coding, we identified the theme that participants did not expect to have role models in their major that looked like them and went into their undergraduate experience with the understanding that they will be the distinct minority in their classes. They did not make notable mention of how a lack of minority faculty affected their success. Upon acceptance, they took on the challenge of being a racial minority in exchange for a well-recognized degree they felt would have more value compared to engineering programs at other universities. They identified ways they maneuvered around their expectation that they would not have representative role models through their use of navigational capital. Integrating knowledge from the framework of navigational capital and its existing applications in engineering and education allows us the opportunity to learn from African American students that have succeeded in engineering programs with low minority faculty representation. The future directions of this work are to outline strategies that could enhance the path of minoritized engineering students towards success and to lay a foundation for understanding the use of navigational capital by minoritized students in engineering at PWIs. Students at PWIs can benefit from understanding their own navigational capital to help them identify ways to successfully navigate educational institutions. Students’ awareness of their capacity to maintain high levels of achievement, their connections to networks that facilitate navigation, and their ability to draw from experiences to enhance resilience provide them with the agency to unleash the invisible factors of their potential to be innovators in their collegiate and work environments. 
    more » « less
  5. Abstract Background

    Creativity is increasingly recognized as an important skill for success in the field of engineering, but most traditional, post‐secondary engineering education programs do not reward creative efforts. Failing to recognize creativity or creative efforts can have particularly negative effects for those students with attention deficit hyperactivity disorder (ADHD), who may exhibit enhanced divergent thinking ability yet struggle in the traditional educational environment.

    Purpose/Hypothesis

    This study was conducted to investigate how ADHD characteristics, academic aptitude, and one important component of creativity (divergent thinking) contribute to academic performance in engineering programs and how traditional markers of academic performance and ADHD characteristics predict divergent thinking.

    Design/Method

    Undergraduate engineering students (n= 60) completed measures of ADHD symptoms and divergent thinking. Scholastic Aptitude Test (SAT) scores and grade point average (GPA) were collected from university records, and hypotheses were tested using a series of multivariate regression models.

    Results

    Verbal SAT scores were the only positive predictor of overall GPA and engineering GPA. ADHD characteristics did not significantly predict overall GPA but negatively predicted engineering GPA. ADHD characteristics were the only positive predictor of divergent thinking ability.

    Conclusions

    ADHD characteristics negatively predict academic performance (i.e., GPA) in engineering programs but are more predictive of divergent thinking ability than traditional markers of academic performance.

     
    more » « less