skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Current Compensators for Unbalanced Electric Distribution Systems
Inherent current imbalances are often present in electric distribution systems due to the increase of singlephase generation in the form of renewables and the existence of single-phase loads. The continued expansion of non-linear load usage is also increasing the levels of harmonics through the power transformers servicing these distribution systems. The issues that arise from these operating conditions are widely known and standard solutions used by utilities are as well. However, they are often bulky and do not provide a level of control or versatility appropriate for these challenges. This paper gives an overview of many of the problems that are faced on distribution systems and how an active shunt compensator may be used to mitigate or eliminate them.  more » « less
Award ID(s):
1747757
PAR ID:
10084332
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2018 IEEE Electronic Power Grid (eGrid)
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Distributed data management systems often operate on “elastic” clusters that can scale up or down on demand. These systems face numerous challenges, including data fragmentation, replication, and cluster sizing. Unfortunately, these challenges have traditionally been treated independently, leaving administrators with little insight on how the interplay of these decisions affects query performance. This paper introduces NashDB, an adaptive data distribution framework that relies on an economic model to automatically balance the supply and demand of data fragments, replicas, and cluster nodes. NashDB adapts its decisions to query priorities and shifting workloads, while avoiding underutilized cluster nodes and redundant replicas. This paper introduces and evaluates NashDB’s model, as well as a suite of optimization techniques designed to efficiently identify data distribution schemes that match workload demands and transition the system to this new scheme with minimum data transfer overhead. Experimentally, we show that NashDB is often Pareto dominant compared to other solutions. 
    more » « less
  2. Machine learning systems deployed in the wild are often trained on a source distribution but deployed on a different target distribution. Unlabeled data can be a powerful point of leverage for mitigating these distribution shifts, as it is frequently much more available than labeled data and can often be obtained from distributions beyond the source distribution as well. However, existing distribution shift benchmarks with unlabeled data do not reflect the breadth of scenarios that arise in real-world applications. In this work, we present the WILDS 2.0 update, which extends 8 of the 10 datasets in the WILDS benchmark of distribution shifts to include curated unlabeled data that would be realistically obtainable in deployment. These datasets span a wide range of applications (from histology to wildlife conservation), tasks (classification, regression, and detection), and modalities (photos, satellite images, microscope slides, text, molecular graphs). The update maintains consistency with the original WILDS benchmark by using identical labeled training, validation, and test sets, as well as identical evaluation metrics. We systematically benchmark state-of-the-art methods that use unlabeled data, including domain-invariant, self-training, and self-supervised methods, and show that their success on WILDS is limited. To facilitate method development, we provide an open-source package that automates data loading and contains the model architectures and methods used in this paper. Code and leaderboards are available at https://wilds.stanford.edu. 
    more » « less
  3. Machine learning systems deployed in the wild are often trained on a source distribution but deployed on a different target distribution. Unlabeled data can be a powerful point of leverage for mitigating these distribution shifts, as it is frequently much more available than labeled data and can often be obtained from distributions beyond the source distribution as well. However, existing distribution shift benchmarks with unlabeled data do not reflect the breadth of scenarios that arise in real-world applications. In this work, we present the WILDS 2.0 update, which extends 8 of the 10 datasets in the WILDS benchmark of distribution shifts to include curated unlabeled data that would be realistically obtainable in deployment. These datasets span a wide range of applications (from histology to wildlife conservation), tasks (classification, regression, and detection), and modalities (photos, satellite images, microscope slides, text, molecular graphs). The update maintains consistency with the original WILDS benchmark by using identical labeled training, validation, and test sets, as well as the evaluation metrics. On these datasets, we systematically benchmark state-of-the-art methods that leverage unlabeled data, including domain-invariant, self-training, and self-supervised methods, and show that their success on WILDS is limited. To facilitate method development and evaluation, we provide an open-source package that automates data loading and contains all of the model architectures and methods used in this paper. Code and leaderboards are available at this https URL. 
    more » « less
  4. We investigate approximate Bayesian inference techniques for nonlinear systems described by ordinary differential equation (ODE) models. In particular, the approximations will be based on set-valued reachability analysis approaches, yielding approximate models for the posterior distribution. Nonlinear ODEs are widely used to mathematically describe physical and biological models. However, these models are often described by parameters that are not directly measurable and have an impact on the system behaviors. Often, noisy measurement data combined with physical/biological intuition serve as the means for finding appropriate values of these parameters.Our approach operates under a Bayesian framework, given prior distribution over the parameter space and noisy observations under a known sampling distribution. We explore subsets of the space of model parameters, computing bounds on the likelihood for each subset. This is performed using nonlinear set-valued reachability analysis that is made faster by means of linearization around a reference trajectory. The tiling of the parameter space can be adaptively refined to make bounds on the likelihood tighter. We evaluate our approach on a variety of nonlinear benchmarks and compare our results with Markov Chain Monte Carlo and Sequential Monte Carlo approaches. 
    more » « less
  5. Machine learning systems deployed in the wild are often trained on a source distribution but deployed on a different target distribution. Unlabeled data can be a powerful point of leverage for mitigating these distribution shifts, as it is frequently much more available than labeled data and can often be obtained from distributions beyond the source distribution as well. However, existing distribution shift benchmarks with unlabeled data do not reflect the breadth of scenarios that arise in real-world applications. In this work, we present the WILDS 2.0 update, which extends 8 of the 10 datasets in the WILDS benchmark of distribution shifts to include curated unlabeled data that would be realistically obtainable in deployment. These datasets span a wide range of applications (from histology to wildlife conservation), tasks (classification, regression, and detection), and modalities (photos, satellite images, microscope slides, text, molecular graphs). The update maintains consistency with the original WILDS benchmark by using identical labeled training, validation, and test sets, as well as identical evaluation metrics. We systematically benchmark state-of-the-art methods that use unlabeled data, including domain-invariant, self-training, and self-supervised methods, and show that their success on WILDS is limited. To facilitate method development, we provide an open-source package that automates data loading and contains the model architectures and methods used in this paper. 
    more » « less