skip to main content


Title: Modulus of Fibrous Collagen at the Length Scale of a Cell
The extracellular matrix provides macroscale structural support to tissues as well as microscale mechanical cues, like stiffness, to the resident cells. As those cues modulate gene expression, proliferation, differentiation, and motility, quantifying the stiffness that cells sense is crucial to understanding cell behavior. Whereas the macroscopic modulus of a collagen network can be measured in uniform extension or shear, quantifying the local stiffness sensed by a cell remains a challenge due to the inhomogeneous and nonlinear nature of the fiber network at the scale of the cell. To address this challenge, we designed an experimental method to measure the modulus of a network of collagen fibers at this scale. We used spherical particles of an active hydrogel (poly N-isopropylacrylamide) that contract when heated, thereby applying local forces to the collagen matrix and mimicking the contractile forces of a cell. After measuring the particles’ bulk modulus and contraction in networks of collagen fibers, we applied a nonlinear model for fibrous materials to compute the modulus of the local region surrounding each particle. We found the modulus at this length scale to be highly heterogeneous, with modulus varying by a factor of 3. In addition, at different values of applied strain, we observed both strain stiffening and strain softening, indicating nonlinearity of the collagen network. Thus, this experimental method quantifies local mechanical properties in a fibrous network at the scale of a cell, while also accounting for inherent nonlinearity.  more » « less
Award ID(s):
1749400
PAR ID:
10084408
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Experimental Mechanics
ISSN:
0014-4851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Cells sense mechanical signals within the extracellular matrix, the most familiar being stiffness, but matrix stiffness cannot be simply described by a single value. Randomness in matrix structure causes stiffness at the scale of a cell to vary by more than an order of magnitude. Additionally, the extracellular matrix contains ducts, blood vessels, and, in cancer or fibrosis, regions with abnormally high stiffness. These different features could alter the stiffness sensed by a cell, but it is unclear whether the change in stiffness is large enough to overcome the noise caused by heterogeneity due to the random fibrous structure. Here we used a combination of experiments and modeling to determine the extent to which matrix heterogeneity disrupts the potential for cell sensing of a locally stiff feature in the matrix. Results showed that, at the scale of a single cell, spatial heterogeneity in local stiffness was larger than the increase in stiffness due to a stiff feature. The heterogeneity was reduced only for large length scales compared to the fiber length. Experiments verified this conclusion, showing spheroids of cells, which were large compared to the average fiber length, spreading preferentially toward stiff inclusions. Hence, the propagation of mechanical cues through the matrix depends on length scale, with single cells being able to sense only the stiffness of the nearby fibers and multicellular structures, such as tumors, also sensing the stiffness of distant matrix features. 
    more » « less
  2. null (Ed.)
    Through mechanical forces, biological cells remodel the surrounding collagen network, generating striking deformation patterns. Tethers—tracts of high densification and fibre alignment—form between cells, thinner bands emanate from cell clusters. While tethers facilitate cell migration and communication, how they form is unclear. Combining modelling, simulation and experiment, we show that tether formation is a densification phase transition of the extracellular matrix, caused by buckling instability of network fibres under cell-induced compression, featuring unexpected similarities with martensitic microstructures. Multiscale averaging yields a two-phase, bistable continuum energy landscape for fibrous collagen, with a densified/aligned second phase. Simulations predict strain discontinuities between the undensified and densified phase, which localizes within tethers as experimentally observed. In our experiments, active particles induce similar localized patterns as cells. This shows how cells exploit an instability to mechanically remodel the extracellular matrix simply by contracting, thereby facilitating mechanosensing, invasion and metastasis. 
    more » « less
  3. Rehfeldt, Florian (Ed.)

    Leader cells direct collective migration through sensing cues in their microenvironment to determine migration direction. The mechanism by which leader cells sense the mechanical cue of organized matrix architecture culminating in a mechanical response is not well defined. In this study, we investigated the effect of organized collagen matrix fibers on leader cell mechanics and demonstrate that leader cells protrude along aligned fibers resulting in an elongated phenotype of the entire cluster. Further, leader cells show increased mechanical interactions with their nearby matrix compared to follower cells, as evidenced by increased traction forces, increased and larger focal adhesions, and increased expression of integrin-α2. Together our results demonstrate changes in mechanical matrix cues drives changes in leader cell mechanoresponse that is required for directional collective migration. Our findings provide new insights into two fundamental components of carcinogenesis, namely invasion and metastasis.

     
    more » « less
  4. Cells can sense and respond to mechanical forces in fibrous extracellular matrices (ECMs) over distances much greater than their size. This phenomenon, termed long-range force transmission, is enabled by the realignment (buckling) of collagen fibers along directions where the forces are tensile (compressive). However, whether other key structural components of the ECM, in particular glycosaminoglycans (GAGs), can affect the efficiency of cellular force transmission remains unclear. Here we developed a theoretical model of force transmission in collagen networks with interpenetrating GAGs, capturing the competition between tension-driven collagen fiber alignment and the swelling pressure induced by GAGs. Using this model, we show that the swelling pressure provided by GAGs increases the stiffness of the collagen network by stretching the fibers in an isotropic manner. We found that the GAG-induced swelling pressure can help collagen fibers resist buckling as the cells exert contractile forces. This mechanism impedes the alignment of collagen fibers and decreases long-range cellular mechanical communication. We experimentally validated the theoretical predictions by comparing the intensity of collagen fiber alignment between cellular spheroids cultured on collagen gels versus collagen–GAG cogels. We found significantly lower intensities of aligned collagen in collagen–GAG cogels, consistent with the prediction that GAGs can prevent collagen fiber alignment. The role of GAGs in modulating force transmission uncovered in this work can be extended to understand pathological processes such as the formation of fibrotic scars and cancer metastasis, where cells communicate in the presence of abnormally high concentrations of GAGs. 
    more » « less
  5. Abstract Cells are known to continuously remodel their local extracellular matrix (ECM) and in a reciprocal way, they can also respond to mechanical and biochemical properties of their fibrous environment. In this study, we measured how stiffness around dermal fibroblasts (DFs) and human fibrosarcoma HT1080 cells differs with concentration of rat tail type 1 collagen (T1C) and type of ECM. Peri-cellular stiffness was probed in four directions using multi-axes optical tweezers active microrheology (AMR). First, we found that neither cell type significantly altered local stiffness landscape at different concentrations of T1C. Next, rat tail T1C, bovine skin T1C and fibrin cell-free hydrogels were polymerized at concentrations formulated to match median stiffness value. Each of these hydrogels exhibited distinct fiber architecture. Stiffness landscape and fibronectin secretion, but not nuclear/cytoplasmic YAP ratio differed with ECM type. Further, cell response to Y27632 or BB94 treatments, inhibiting cell contractility and activity of matrix metalloproteinases, respectively, was also dependent on ECM type. Given differential effect of tested ECMs on peri-cellular stiffness landscape, treatment effect and cell properties, this study underscores the need for peri-cellular and not bulk stiffness measurements in studies on cellular mechanotransduction. 
    more » « less