skip to main content


Title: Elucidating the active sites for CO 2 electroreduction on ligand-protected Au 25 nanoclusters
Using density functional theory (DFT) calculations, we investigated the electrochemical reduction of CO 2 and the competing H 2 evolution reaction on ligand-protected Au 25 nanoclusters (NCs) of different charge states, Au 25 (SR) 18 q ( q = −1, 0, +1). Our results showed that regardless of charge state, CO 2 electroreduction over Au 25 (SR) 18 q NCs was not feasible because of the extreme endothermicity to stabilize the carboxyl (COOH) intermediate. When we accounted for the removal of a ligand (both –SR and –R) from Au 25 (SR) 18 q under electrochemical conditions, surprisingly we found that this is a thermodynamically feasible process at the experimentally applied potentials with the generated surface sites becoming active centers for electrocatalysis. In every case, the negatively charged NCs, losing a ligand from their surface during electrochemical conditions, were found to significantly stabilize the COOH intermediate, resulting in dramatically enhanced CO 2 reduction. The generated sites for CO 2 reduction were also found to be active for H 2 evolution, which agrees with experimental observations that these two processes compete. Interestingly, we found that the removal of an –R ligand from the negatively charged NC, resulted in a catalyst that was both active and selective for CO 2 reduction. This work highlights the importance of both the overall charge state and generation of catalytically active surface sites on ligand-protected NCs, while elucidating the CO 2 electroreduction mechanisms. Overall, our work rationalizes a series of experimental observations and demonstrates pathways to convert a very stable and catalytically inactive NC to an active electrocatalyst.  more » « less
Award ID(s):
1652694
NSF-PAR ID:
10084459
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Catalysis Science & Technology
Volume:
8
Issue:
15
ISSN:
2044-4753
Page Range / eLocation ID:
3795 to 3805
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Atomically precise, thiolate-protected gold nanoclusters (TPNCs) exhibit remarkable catalytic performance for the electrochemical reduction of carbon dioxide (CO 2 R) to CO. The origin of their high CO 2 R activity and selectivity has been attributed to partial ligand removal from the thiolate-covered surfaces of TPNCs to expose catalytically active sulfur atoms. Recently, heterometal doped (alloy) TPNCs have been shown to exhibit enhanced CO 2 R activity and selectivity compared to their monometallic counterparts. However, systematic studies on the effect of doping (metal type and location on TPNC) on active site exposure and CO 2 R activity are missing in literature. Herein, we apply Density Functional Theory calculations to investigate the effect of heterometal (Pt, Pd, Hg and Cd) doping of Au 25 (SR) 18 TPNC on the active site exposure and CO 2 R activity and selectivity. We reveal that doping significantly modifies relevant TPNC electronic properties, such as electron affinity, while also altering partial ligand removal and carboxyl (*COOH) intermediate formation energies. Furthermore, we demonstrate that changing the dopant ( e.g. Hg) position can change the selectivity of the TPNC towards CO (g) or H 2(g) formation, highlighting the importance of dopant locations in TPNC-based CO 2 R. Most notably, we report a universal ( i.e. capturing different dopant types and positions) linear trend between the ligand removal energy and i) the *COOH formation energy, as well as, ii) the hydrogen (*H) formation energy on the different alloy TPNCs. Thus, utilizing the ligand removal energy as a descriptor for CO 2 RR activity and selectivity, our work opens new avenues for accelerated computational screening of different alloy TPNCs for electrocatalytic CO 2 R applications. 
    more » « less
  2. Abstract

    This work investigates the critical factors impacting electrochemical CO2reduction reaction (CO2RR) using atomically precise Au nanoclusters (NCs) as electrocatalysts. First, the influence of size on CO2RR is studied by precisely controlling NC size in the 1–2.5 nm regime. We find that the electrocatalytic CO partial current density increases for smaller NCs, but the CO Faradaic efficiency (FE) is not directly associated with the NC size. This indicates that the surface‐to‐volume ratio, i.e. the population of active sites, is the dominant factor for determining the catalytic activity, but the selectivity is not directly impacted by size. Second, we compare the CO2RR performance of Au38isomers (Au38Q and Au38T) to reveal that structural rearrangement of identical size NCs can lead to significant changes in both CO2RR activity and selectivity. Au38Q shows higher activity and selectivity towards CO than Au38T, and density functional theory (DFT) calculations reveal that the average formation energy of the key *COOH intermediate on the proposed active sites is significantly lower on Au38Q than Au38T. These results demonstrate how the structural isomerism can impact stabilization of reaction intermediates as well as the overall CO2RR performance of identical size Au NCs. Overall, this work provides important structure–property relationships for tailoring the NCs for CO2RR.

     
    more » « less
  3. Abstract

    This work investigates the critical factors impacting electrochemical CO2reduction reaction (CO2RR) using atomically precise Au nanoclusters (NCs) as electrocatalysts. First, the influence of size on CO2RR is studied by precisely controlling NC size in the 1–2.5 nm regime. We find that the electrocatalytic CO partial current density increases for smaller NCs, but the CO Faradaic efficiency (FE) is not directly associated with the NC size. This indicates that the surface‐to‐volume ratio, i.e. the population of active sites, is the dominant factor for determining the catalytic activity, but the selectivity is not directly impacted by size. Second, we compare the CO2RR performance of Au38isomers (Au38Q and Au38T) to reveal that structural rearrangement of identical size NCs can lead to significant changes in both CO2RR activity and selectivity. Au38Q shows higher activity and selectivity towards CO than Au38T, and density functional theory (DFT) calculations reveal that the average formation energy of the key *COOH intermediate on the proposed active sites is significantly lower on Au38Q than Au38T. These results demonstrate how the structural isomerism can impact stabilization of reaction intermediates as well as the overall CO2RR performance of identical size Au NCs. Overall, this work provides important structure–property relationships for tailoring the NCs for CO2RR.

     
    more » « less
  4. Au is one of the most promising electrocatalysts to convert CO 2 into CO in an aqueous-phase electrochemical reduction. However, ultrasmall Au nanocatalysts (AuNCs, <2 nm) have proven to be favorable for water reduction over CO 2 , although they possess a large surface-to-volume ratio and potentially are ideal for CO 2 reduction. We herein report that ultrasmall AuNCs (1.9 ± 0.3 nm) supported on nitrided carbon are remarkably active and selective for CO 2 reduction. The mass activity for CO of AuNCs reaches 967 A g −1 with a faradaic efficiency for CO of ∼83% at −0.73 V ( vs . reversible hydrogen electrode) that is an order of magnitude more active than the state-of-the-art results. The high activity is endowed by the large surface area per unit weight and the high selectivity of ultrasmall AuNCs for CO 2 reduction originates from the cooperative effect of Au and the nitrided carbon support where the surface N sites act as Lewis bases to increase the surface charge density of AuNCs and enhance the localized concentration of CO 2 nearby catalytically active Au sites. We show that our results can be applied to other pre-synthesized Au catalysts to largely improve their selectivity for CO 2 reduction by 50%. Our method is expected to illustrate a general guideline to effectively lower the cost of Au catalysts per unit weight of the product while maintaining its high selectivity for CO 2 reduction. 
    more » « less
  5. Abstract

    The electrochemical CO2reduction reaction (CO2RR) to syngas represents a promising solution to mitigate CO2emissions and manufacture value‐added chemicals. Palladium (Pd) has been identified as a potential candidate for syngas production via CO2RR due to its transformation to Pd hydride under CO2RR conditions, however, the pre‐hydridized effect on the catalytic properties of Pd‐based electrocatalysts has not been investigated. Herein, pre‐hydridized Pd nanocubes (PdH0.40) supported on carbon black (PdH0.40NCs/C) are directly prepared from a chemical reduction method. Compared with Pd nanocubes (Pd NCs/C), PdH0.40NCs/C presented an enhanced CO2RR performance due to its less cathodic phase transformation revealed by the in situ X‐ray absorption spectroscopy. Density functional theory calculations revealed different binding energies of key reaction intermediates on PdH0.40NCs/C and Pd NCs/C. Study of the size effect further suggests that NCs of smaller sizes show higher activity due to their more abundant active sites (edge and corner sites) for CO2RR. The pre‐hydridization and reduced NC size together lead to significantly improved activity and selectivity of CO2RR.

     
    more » « less