skip to main content


Title: Early informal STEM experiences and STEM identity: The importance of talking science
Abstract

In this paper, we examine the relationship between participants’ childhood science, technology, engineering, and mathematics (STEM) related experiences, their STEM identity (i.e., seeing oneself as a STEM person), and their college career intentions. Whereas some evidence supports the importance of childhood (i.e., K‐4) informal STEM education experiences, like participating in science camps, existing research does not adequately address their relationship to STEM career intention later in life. Grounding our work in identity research, we tested the predictive power of STEM identity on career intention (N = 15,847). We found that for every one‐point higher on our STEM identity scale, participants’ odds of choosing a STEM career in college increased by 85%. We then tested whether a variety of childhood informal experiences predicted participants’ STEM identity. While controlling for home environment, gender, and other relevant factors, only talking with friends and family about science, and consuming science and science‐fiction media (i.e., books and television) were predictive of STEM identity in college.

 
more » « less
NSF-PAR ID:
10084470
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Science Education
Volume:
103
Issue:
3
ISSN:
0036-8326
Page Range / eLocation ID:
p. 623-637
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Informal STEM learning experiences (ISLEs), such as participating in science, computing, and engineering clubs and camps, have been associated with the development of youth’s science, technology, engineering, and mathematics interests and career aspirations. However, research on ISLEs predominantly focuses on institutional settings such as museums and science centers, which are often discursively inaccessible to youth who identify with minoritized demographic groups. Using latent class analysis, we identify five general profiles (i.e., classes) of childhood participation in ISLEs from data reported by a nationally representative sample of college students (N= 15,579). Results show that childhood participation in specific typologies of ISLEs (i.e., setting and activity type) is associated with youth's disciplinary interests at the end of high school. Participation in outdoor activities that invite observation is more often reported by female respondents and is negatively associated with interest in computing and mathematics. Participation in indoor activities that invite object manipulation is more often reported by male respondents and is positively associated with interest in computing and engineering. However, frequent participation in multiple ISLEs is positively associated with interest in “science.” These results elucidate stereotypical discourses that reinforce the exclusion of minoritized students and expose critical areas needing reform.

     
    more » « less
  2. In this research-based paper, we explore the relationships among Rice University STEM students’ high school preparation, psychological characteristics, and career aspirations. Although greater high school preparation in STEM coursework predicts higher STEM retention and performance in college [1], objective academic preparation and college performance do not fully explain STEM retention decisions, and the students who leave STEM are often not the lowest performing students [2]. Certain psychosocial experiences may also influence students’ STEM decisions. We explored the predictive validity of 1) a STEM diagnostic exam as an objective measure of high school science and math preparation and 2) self-efficacy as a psychological measure on long-term (three years later) STEM career aspirations and STEM identity of underprepared Rice STEM students. University administrators use diagnostic exam scores (along with other evidence of high school underpreparation) to identify students who might benefit from additional support. Using linear regression to explore the link between diagnostic exam scores and self-efficacy, exam scores predicted self-efficacy a semester after students’ first semester in college; exam scores were also marginally correlated with self-efficacy three years later. Early STEM career aspirations predicted later career aspirations, accounting for 21.3% of the variance of career outcome expectations three years later (β=.462, p=.006). Scores on the math diagnostic exam accounted for an additional 10.1% of the variance in students’ three-year STEM career aspirations (p=.041). Self-efficacy after students’ first semester did not predict future STEM aspirations. Early STEM identity explained 28.8% of the variance in three-year STEM identity (p=.001). Math diagnostic exam scores accounted for only marginal incremental variance after STEM identity, and self-efficacy after students’ first semester did not predict three-year STEM aspirations. Overall, we found that the diagnostic exam provided incremental predictive validity in STEM career aspirations after students’ sixth semester of college, indicating that early STEM preparation has long-lasting ramifications for students’ STEM career intentions. Our next steps include examining whether students’ diagnostic exam scores predict STEM graduation rates and final GPAs for science and math versus engineering majors. 
    more » « less
  3. Background:

    The United States continues to invest considerable resources into developing the next generation of science, technology, engineering, and mathematics (STEM) talent. Efforts to shore up interest in pursuing STEM careers span decades and have increasingly focused on boosting interest among diverse student populations. Policymakers have called for engaging students in a greater STEM ecology of support that extends beyond the traditional classroom environment to increase student STEM career interest. Yet, few robust studies exist exploring the efficacy of many programmatic efforts and initiatives outside the regular curriculum intended to foster STEM interest. To maximize STEM education investments, promote wise policies, and help achieve the aim of creating STEM learning ecosystems that benefit diverse student populations and meet the nation’s STEM goals, it is crucial to examine the effectiveness of these kinds of STEM education initiatives in promoting STEM career aspirations.

    Purpose:

    The purpose of this quasi-experimental study was to examine the impact of one popular, yet understudied, STEM education initiative on students’ STEM career aspirations: participation in a university- or college-run STEM club or program activity (CPA) during high school. Specifically, we studied whether participation in a college-run STEM CPA at a postsecondary institution during high school was related to college-going students’ STEM career aspirations, and we examined whether that relationship differed depending on student characteristics and prior STEM interests.

    Research Design:

    We conducted a quasi-experimental investigation to explore the impact of participation in university- or college-run STEM CPAs on college-going students’ STEM career aspirations. We administered a retrospective cohort survey to students at 27 colleges and universities nationwide resulting in a sample of 15,847 respondents. An inverse probability of treatment weighted logistic regression model with a robust set of controls was computed to estimate the odds of expressing STEM career aspirations among those who participated in college-run STEM CPAs compared with the odds expressed among students who did not participate. Our weighting accounted for self-selection effects.

    Results:

    Quasi-experimental modeling results indicated that participation in university- or college-run STEM CPAs had a significant impact on the odds that college-going students would express STEM career aspirations relative to students who did not participate. The odds of expressing interest in a STEM career among participants in STEM CPAs were 1.49 times those of the control group. Robustness checks confirmed our results. The result held true for students whether or not they expressed interest in STEM careers prior to participation in STEM CPAs, and it held true across a diverse range of student characteristics (e.g., race, parental education, gender, standardized test scores, and family/school encouragement).

    Conclusions:

    Results suggest that university- and college-run STEM CPAs play an important role in the STEM education ecology, serving the national goal of expanding the pool of college-going students who aspire to STEM careers. Moreover, results showed that participation in university- and college-run STEM CPAs during high school is equally effective across diverse student characteristics. Policymakers, educators, and those charged with making investment decisions in STEM education should seriously consider university- and college-run STEM CPAs as a promising vehicle to promote diverse students’ STEM career aspirations in the broader STEM learning ecosystem and as an important complement to other STEM learning environments.

     
    more » « less
  4. Offerdahl, Erika (Ed.)
    Despite the wealth of research exploring science, technology, engineering, and mathematics (STEM) identity and career goals in both formal and informal settings, existing literature does not consider STEM identity for undergraduate students pursuing health and medical careers through STEM pathways. We address this gap by examining the STEM identity of undergraduate STEM majors on pre-med/health tracks as it compares with that of other STEM majors, thus focusing on a population that is chronically understudied in STEM education research. We surveyed 440 undergraduate STEM students enrolled in entry-level STEM courses to assess their STEM identities and three identity precursors: interest, performance–competence, and recognition. Through regression analyses accounting for gender, major, and perceived home support around STEM, we found that pre-med/health students were more likely to have higher STEM identity and recognition scores than their peers; we did not detect a significant difference for performance–competence or interest in STEM. Although there is little tracking of pre-med/health students’ ultimate career attainment, the implications of our findings support a potential for sustaining pre-med/health students while simultaneously creating pathways to other STEM pursuits for the nearly 60% of those who do not enter medical school by offering participation in experiences that affirm their STEM identities. 
    more » « less
  5. Abstract

    Racially minoritized groups are underrepresented in science, technology, engineering, and math (STEM) degree programs and careers, warranting the need to examine students' racialized experiences in K‐12 settings that may influence their STEM persistence. In particular, the current study explored adolescent perceptions of school racial climate (SRC) as a potential contributor to pre‐college racial disparities in STEM. We used latent class analysis to group adolescents based on their SRC perceptions and explored group differences in their interest in a STEM career and their belonging, psychological needs satisfaction, and engagement in STEM courses. Adolescent participants (N = 412, 50.2% female, 36.9% male, 12.9% other/not reported,Mage = 15.72 years, standard deviation = 1.24) attending five high schools in the Southeastern United States, were grouped into five classes based on their perceptions of SRC: Critical SRC (CritSRC), Average SRC, Average with Stereotyping, Positive SRC (PosSRC), and Positive with Stereotyping. Latent class membership differed by race, age, and learning environment. Results revealed that students with more positive perceptions of SRC reported greater belonging, engagement, and needs satisfaction in their STEM courses and more interest in a STEM career compared to students with CritSRC perceptions. Findings also indicated that White students were more likely than Black students to perceive a PosSRC. Recommendations for areas of future research and policy implications are discussed.

     
    more » « less