Science identity, or one's sense of recognition and competence as a scientist, is an invaluable tool for predicting student persistence and success, but is understudied among undergraduates completing preparatory work for later studies in medicine, nursing, and allied health (“pre‐health career students”). In the United States, pre‐health career students make up approximately half of all biology students and, as professionals, play important roles in caring for an aging, increasingly diverse population, managing the ongoing effects of a pandemic, and navigating socio‐political shifts in public attitudes toward science and evidence‐based medicine. Pre‐health career students are also often members of groups marginalized and minoritized in STEM education, and generally complete their degrees in community college settings, which are chronically under‐resourced and understudied. Understanding these students' science identities is thus a matter of social justice and increasingly important to public health in the United States. We examined science identity and engagement among community college biology students using two scales established and validated for use with STEM students attending four‐year institutions. Exploratory and confirmatory factor analysis were used on two sub‐samples drawn from the pool of 846 participants to confirm that the factor structures functioned as planned among the new population. Science identity values were then compared between pre‐health career students (pre‐nursing and pre‐allied health) and other groups. Pre‐health career students generally reported interest and performance/competence on par with their traditional STEM, pre‐med, and pre‐dentistry peers, challenging popular assumptions about these students' interests and abilities. However, they also reported significantly lower recognition than traditional STEM and pre‐med/dentistry students. The implications for public health, researchers, and faculty are discussed.
- Award ID(s):
- 1846167
- PAR ID:
- 10309091
- Editor(s):
- Offerdahl, Erika
- Date Published:
- Journal Name:
- CBE—Life Sciences Education
- Volume:
- 20
- Issue:
- 2
- ISSN:
- 1931-7913
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
https://peer.asee.org/28741 Previous studies quantitatively and qualitatively measured and validated the constructs that make up math identity, physics identity and engineering identity (i.e., interest in the subject, recognition by others, and beliefs about one’s performance/competence) for predicting engineering choice. To answer the first research question, a Welch’s t-test was used to compare the averages of first-generation college students and non-first-generation college students on overall measures of mathematics, physics, and engineering identity as well as the constructs of interest, recognition, and performance/competence in each subject area. This t-test was selected because it corrects unequal variance within the two populations. To answer the second research question, we used multiple linear regression to predict the choices of STEM and non-stem majors using measures of identity, affective factors, and first-generation college student status. Results from the first analysis demonstrate that first-generation college students entered engineering with a high sense of engineering identity, particularly in the performance/competence and interest constructs. Regression results showed that first-generation college students’ physics identity positively predicted choice of a non-STEM career; that is, first-generation college students with high physics identity were more interested in non-STEM careers (e.g., non-profit/non-government organization and medicine/health). This work highlights that first-generation college students may have different career pathway intentions and motivations in studying engineering during college.more » « less
-
Previous research on physics identity by Hazari et al. has shown that interest, recognition, and performance are three key factors in students’ development of a physics identity. Learning Assistants have potential to improve students’ experiences in STEM classrooms by increasing performance and recognition. In this poster, we will present preliminary results from the STEM Identity (STEM-PIO-4) and STEM Career Interest surveys for courses supported by Learning Assistants in order to evaluate the impact of Learning Assistants on STEM identity.more » « less
-
Measures of subject-related role identities in physics and math have been developed from research on the underlying constructs of identity in science education. The items for these measures capture three constructs of identity: students’ interest in the subject, students’ feeling of recognition by others, and students’ beliefs about their performance/competence in the subject area. In prior studies with late secondary and early post-secondary students, participants did not distinguish between performance beliefs (e.g., believing that they can do well in a particular subject) and competence beliefs (e.g., believing that they can understand a particular subject); therefore, performance/competence beliefs are measured as a single construct. These validated measures have been successful in predicting STEM career choices including physics, math, and engineering. Based on these measures of identity, literature on engineering identity, and my prior work on understanding engineering choice and belongingness through students’ science and math identities at the transition from high school to college, I developed a set of new engineering identity measures that capture and overall identification as an engineer, future engineering career identification, and students’ engineering-related interest, recognition, and performance/competence beliefs. I conducted a pilot survey of 371 first-year engineering students at three institutions within the U.S. during the spring semester of 2015. An exploratory factor analysis (EFA) was performed to examine the underlying structure of the piloted questions about students’ engineering identity. The measures loaded on three separate constructs that were consistent with the hypothesized constructs of interest, performance/competence and recognition. The developed items were used in a subsequent study deployed in the fall semester of 2015 that measured more than 2500 first-year engineering students’ attitudes and beliefs at four institutions within the U.S. The data on engineering identity measures from this second survey were analyzed using confirmatory factor analysis (CFA). The results indicated that the developed measures do extract a significant portion of the average variance in the latent constructs and the internal consistency of the measures (Cronbach’s α) falls within the acceptable and better range. The development of these items provides ways for engineering education researchers to more deeply explore the underlying self-beliefs in students’ engineering identity formation through quantitative measures with strong evidence for validity.more » « less
-
Abstract Identity development frameworks provide insight into why and to what extent individuals engage in STEM‐related activities. While studies of “STEM identity” often build off previously validated disciplinary and/or science identity frameworks, quantitative analyses of constructs that specifically measure STEM identity and its antecedents are scarce, making it challenging for researchers or practitioners to apply a measurement‐based perspective of participation in opportunities billed as “STEM.” In this study, we tested two expanded structural equation models of STEM identity development, building off extensions of science and disciplinary‐identity frameworks, that incorporated additional factors relevant to identity development: gender, ethnicity, home science support, parental education, and experiencing science talk in the home. Our models test theorized relationships between interest, sense of recognition, performance‐competence, and identity in the context of STEM with undergraduate students (
N = 522) enrolled in introductory STEM courses at a Hispanic Serving Institution. Our findings support our measurement of STEM identity and its indicators, providing researchers with a predictive model associated with academic intentions across disciplinary domains in STEM. Further, our expanded model (i.e., Model I+) indicates significant contributions of participant gender, which has a larger indirect effect on STEM identity (β = 0.50) than the direct effect of STEM interest (β = 0.29), and of home support in relation to performance‐competence in academic contexts. Our model also posits a significant contribution of family science talk to sense of recognition as a STEM person, expanding our understandings of the important role of the home environment while challenging prior conceptions of science capital and habitus. We situate our results within a broader discussion regarding the validity of “STEM identity” as a concept and construct in the context of communities often marginalized in STEM fields.