skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Query Log Compression for Workload Analytics
Analyzing database access logs is a key part of performance tuning, intrusion detection, benchmark development, and many other database administration tasks. Unfortunately, it is common for production databases to deal with millions or more queries each day, so these logs must be summarized before they can be used. Designing an appropriate summary encoding requires trading off between conciseness and information content. For example: simple workload sampling may miss rare, but high impact queries. In this paper, we present LogR, a lossy log compression scheme suitable for use in many automated log analytics tools, as well as for human inspection. We formalize and analyze the space/fidelity trade-off in the context of a broader family of “pattern” and “pattern mixture” log encodings to which LogR belongs. We show through a series of experiments that LogR compressed encodings can be created efficiently, come with provable information-theoretic bounds on their accuracy, and outperform state-of-art log summarization strategies.  more » « less
Award ID(s):
1750460 1409551
PAR ID:
10084497
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the VLDB Endowment
Volume:
12
Issue:
3
ISSN:
2150-8097
Page Range / eLocation ID:
183 - 196
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Database access logs are the starting point for many forms of database administration, from database performance tuning, to security auditing, to benchmark design, and many more. Unfortunately, query logs are also large and unwieldy, and it can be difficult for an analyst to extract broad patterns from the set of queries found therein. Clustering is a natural first step towards understanding the massive query logs. However, many clustering methods rely on the notion of pairwise similarity, which is challenging to compute for SQL queries, especially when the underlying data and database schema is unavailable. We investigate the problem of computing similarity between queries, relying only on the query structure. We conduct a rigorous evaluation of three query similarity heuristics proposed in the literature applied to query clustering on multiple query log datasets, representing different types of query workloads. To improve the accuracy of the three heuristics, we propose a generic feature engineering strategy, using classical query rewrites to standardize query structure. The proposed strategy results in a significant improvement in the performance of all three similarity heuristics. 
    more » « less
  2. Workflow reconstruction through logs is crucial for troubleshooting targeted distributed systems. It is also challenging to extract enough information from logs and keep a concise view, which makes manual log analysis hard to practice. However, currently popular tools rely on identifier-based log parsing, leaving a large amount of workflow information unexploited. In this paper, we propose a log extraction approach NLog, which utilizes a natural language processing based approach to obtain the key information from log messages and identify the same object in logs generated by different statements without any domain knowledge. We propose to use keyed message, a new log storage structure to store the parsed logs. We implement NLog and apply it to distributed data analytics frameworks Spark and MapReduce. Evaluation results show that NLog can accurately identify the objects in log messages even without explicit identifiers. By using keyed messages, users can have a concise as well as flexible view of the workflows. 
    more » « less
  3. Logging is a significant programming practice. Due to the highly transactional nature of modern software applications, massive amount of logs are generated every day, which may overwhelm developers. Logging information overload can be dangerous to software applications. Using log levels, developers can print the useful information while hiding the verbose logs during software runtime. As software evolves, the log levels of logging statements associated with the surrounding software feature implementation may also need to be altered. Maintaining log levels necessitates a significant amount of manual effort. In this paper, we demonstrate an automated approach that can rejuvenate feature log levels by matching the interest level of developers in the surrounding features. The approach is implemented as an open-source Eclipse plugin, using two external plug-ins (JGit and Mylyn). It was tested on 18 open-source Java projects consisting of ~3 million lines of code and ~4K log statements. Our tool successfully analyzes 99.22\% of logging statements, increases log level distributions by ~20\%, and increases the focus of logs in bug fix contexts ~83\% of the time. For further details, interested readers can watch our demonstration video (https://www.youtube.com/watch?v=qIULoAXoDv4). 
    more » « less
  4. Beyersdorff, Olaf; Pilipczuk, Michał; Pimentel, Elaine; Thắng, Nguyễn Kim (Ed.)
    For a length n text over an alphabet of size σ, we can encode the suffix tree data structure in 𝒪(nlog σ) bits of space. It supports suffix array (SA), inverse suffix array (ISA), and longest common extension (LCE) queries in 𝒪(log^ε_σ n) time, which enables efficient pattern matching; here ε > 0 is an arbitrarily small constant. Further improvements are possible for LCE queries, where 𝒪(1) time queries can be achieved using an index of space 𝒪(nlog σ) bits. However, compactly indexing a two-dimensional text (i.e., an n× n matrix) has been a major open problem. We show progress in this direction by first presenting an 𝒪(n²log σ)-bit structure supporting LCE queries in near 𝒪((log_σ n)^{2/3}) time. We then present an 𝒪(n²log σ + n²log log n)-bit structure supporting ISA queries in near 𝒪(log n ⋅ (log_σ n)^{2/3}) time. Within a similar space, achieving SA queries in poly-logarithmic (even strongly sub-linear) time is a significant challenge. However, our 𝒪(n²log σ + n²log log n)-bit structure can support SA queries in 𝒪(n²/(σ log n)^c) time, where c is an arbitrarily large constant, which enables pattern matching in time faster than what is possible without preprocessing. We then design a repetition-aware data structure. The δ_2D compressibility measure for two-dimensional texts was recently introduced by Carfagna and Manzini [SPIRE 2023]. The measure ranges from 1 to n², with smaller δ_2D indicating a highly compressible two-dimensional text. The current data structure utilizing δ_2D allows only element access. We obtain the first structure based on δ_2D for LCE queries. It takes 𝒪^{~}(n^{5/3} + n^{8/5}δ_2D^{1/5}) space and answers queries in 𝒪(log n) time. 
    more » « less
  5. Abstract In‐channel wood, a critical component of forested rivers, has the capacity to enhance hyporheic flow. This process facilitates the continuous exchange of gases, solutes, and nutrients across the sediment‐water interface, regulating pollutant transport and biogeochemical cycles in rivers. When two wood structures are in close proximity, the hyporheic flows induced by each log can interact, yet such effects remain largely uncharacterized. In this study, we investigated the impact of two in‐line channel‐spanning logs with a vertical gap above the sediment‐water interface on hyporheic flow through laboratory experiments conducted under various conditions. Specifically, we measured water surface profiles, surface flow fields, and hyporheic flow fields around logs with different center‐to‐center distances (). Our results demonstrated that when the center‐to‐center distance between two logs was less than 10 times the log diameter, the wakes of the two logs interfered with each other, resulting in a decrease in both hyporheic flow rates and the difference in water surface elevation. Furthermore, we demonstrated the relationship between the pattern of log‐induced hyporheic flow and the surface flow regime. Our results suggest that the hyporheic flow pattern induced by logs can be inferred from measurements of the surface flow patterns. Our findings will contribute to an improved estimation of hyporheic flow induced by logs distributed along river channels. 
    more » « less