skip to main content

Title: Implementing and Assessing a Joint REU/RET Program in Materials Science
In this paper we describe a joint Research Experience for Undergraduates (REU) and Research Experience for Teachers (RET) program focused on energy and sustainability topics within a Materials Science and Engineering program at a public university. This program brought ten undergraduate science and engineering students and five local middle and high school teachers on campus for an 8-week research experiences working with different lab groups. Given the relatively small number of participants, we chose qualitative interviews as our primary source of data for assessing the effectiveness of this program. The participants identified numerous positive aspects of participating in the summer research program. Students appreciated the sense of community they developed with both the other participants in the research program and the other members of their lab groups. Although most of the participants did not report the summer research experience as having a strong influence on their decisions to pursue graduate school or careers involving research, they did report both being more confident in their ability to be successful as a researcher and appreciating the opportunity to learn more about the practice of engineering research in an academic setting. For the teachers involved in the program we describe how participation influenced their more » leadership, perceptions of adoption educational innovations, and willingness to provide more opportunities to engage their students in authentic STEM research. The participants also provided several recommendations for improvement to the summer research program. For the students, these included more materials in advance and a more streamlined onboarding process to allow them to get up to speed on their projects more quickly, consistent access to their supervisors, and work that is intellectually challenging. Suggestion from the teacher participants for improvement mostly involved requests for more guidance on how to incorporate what they were learning in their research into lessons for their classrooms. By describing this program and the successes and challenges encountered by the participants and organizers, we intend to help others considering implementing REU/RET programs or other summer research experiences to design and implement successful programs. « less
Authors:
; ;
Award ID(s):
1658076
Publication Date:
NSF-PAR ID:
10084649
Journal Name:
ASEE Annual Conference and Exposition
Page Range or eLocation-ID:
Paper ID #16370
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper we present an evaluation and lessons learned from a joint Research Experience for Undergraduates (REU) and Research Experience for Teachers (RET) program focused on energy and sustainability topics within a Materials Science and Engineering program at a public university. This program brought eleven undergraduate science and engineering students with diverse educational and institutional backgrounds and four local middle and high school teachers on campus for an 8-week research experience working in established lab groups at the university. Using the Qualtrics online survey software, we conducted pre-experience and post-experience surveys of the participants to assess the effects of participating in this summer research program. At the beginning of the summer, all participants provided their definition of technical research and described what they hoped to get out of their research experience, and the undergraduate students described their future career and educational plans. At the conclusion of the summer, a post-experience survey presented participants’ with their answers from the beginning of the summer and asked them to reflect on how their understanding of research and future plans involving research changed over the course of the summer experience. Many participants evolved a new understanding of research as a result of participatingmore »in the summer experience. In particular, they better recognized the collaborative nature of research and the challenges that can arise as part of the process of doing research. Participants acquired both technical and professional skills that they found useful, such as learning new programming languages, becoming proficient at using new pieces of equipment, reviewing technical literature, and improving presentation and communication skills. Undergraduates benefited from developing new relationships with their peers, while the teacher participants benefited from developing relationships with faculty and staff at the university. While most of the participants felt that they were better prepared for future studies or employment, they did not feel like the summer research experience had a significant impact on their future career or degree plans. Finally, while almost all of the participants described their summer research experience as positive, areas for improvement included better planning and access to mentors, as well as more structured activities for the teachers to adapt their research activities for the classroom.« less
  2. The Smart City Research Experience for Undergraduates (REU) and Research Experience for Teachers (RET) (SCR2) Mega-Site program, which is supported by the National Science Foundation (NSF) (#1849454), was formed in 2018 to address the low participation and graduation rates of post-secondary students belonging to underrepresented minority groups in the engineering field. The participating schools in the program are all minority serving and members of a consortium consisting of 14 Historically Black Colleges and Universities (HBCUs) and 1 Hispanic Serving Institution (HSI), where Morgan State University (MSU) serves as the lead institution. The program targets lower division underperforming REU students who are less likely to have the opportunity to participate in research as undergraduates. Participation in this type of experience has been demonstrated to be transformative and to have the potential to increase retention and graduation rates at these institutions. RET participants are recruited from local community colleges and high schools that serve as feeder schools to the consortium institutions. These teachers are responsible for preparing students who could potentially be interesting in pursuing a college major in engineering by exposing them to hands-on engineering design practices. Over the last two years of the program’s existence, 61 students and 24 teachersmore »have successfully participated. As with most 2020 summer programs, the SCR2 program was challenged by the novel corona virus (COVID-19) pandemic, which hit the United states during the recruitment period of the project. Consequently, the project leadership team decided to offer the summer program remotely (on-line) rather than bring students to the participating three campuses across which the program is distributed. The planning and execution of the program during a global pandemic has brought key insights into techniques, methods, and technologies for effective cross-site communication, faculty advisor/mentor involvement, participant engagement, and leveraging the strong network that connects the participating schools. Essentially, a multi-site remote only combined REU/RET program is efficacious in increasing participant’s confidence, knowledge and desire to pursue further engineering research experiences. This paper presents these insights along with supporting program evaluation findings.« less
  3. The purpose of this study was to examine the influence of multi-layered mentoring in summer engineering programs on confidence in understanding engineering research, engineering disciplines and the ability to conduct engineering research. This paper describes the work in progress towards incorporating this approach into summer programs at Rutgers University. The participants in the study included high school students from over 6 different high schools in New Jersey, coupled with in-service teachers who were participants in a National Science Foundation RET Site: Rutgers University Research Experience for Teachers in Engineering for Green Energy Technology and undergraduate scholars who participated in the REU Site: Green Energy Technology Undergraduate Program. The perceptions, understanding and evaluation of the program before the implementation of the multi-layered mentorship program are compared to the multi-layered program. High school students expressed higher confidence levels in the engineering design cycle and knowledge of the engineering discipline in the multi-layered mentorship program. Undergraduate students who were in labs where they peer-mentored teachers expressed higher levels of confidence in their skills as researchers than undergraduate students who did not peer-mentor in-service teachers or high school students. Future work will include enhanced data sampling, a revision of interview questions and assessment ofmore »participant’s understanding of concepts via quizzes.« less
  4. Abstract Undergraduate research continues to serve as an effective strategy for mitigating the effects of a leaky pipeline. Significant funding from institutions and government agencies has increased the number of students participating in undergraduate research. In this paper, we report on the six-year experience of a National Science Foundation funded Research Experiences for Undergraduates (REU) Site: Biomedical Engineering in Simulations, Imaging, and Modeling (BME-SIM). The operation and evaluation of the program are both described. We report on the results from 55 students over six summers from 2014 to 2019. Our program was successful in attracting a diverse group of participants including 46% under-represented minority students and 53% women. Based on evaluation results, students reported significant gains in technical skills, communication skills, and knowledge of graduate school. Our findings indicate baseline gender differences for several learning outcomes, where women and nonbinary students report lower levels of mastery. These gaps are closed by the end of the program except for confidence in skills, which is still significantly lower than those reported by male counterparts. The impact of the experience on ultimate career path is difficult to determine due to underlying biases and other motivating factors; however, 67.6% of graduates have entered graduatemore »programs. Finally, we have provided lessons learned for those who are interested in building a summer research program. In conclusion, we have described the successful implementation of an REU site and the positive learning outcomes of the student participants.« less
  5. Research Experience for Teachers (RET) programs are National Science Foundation (NSF) funded programs designed to provide K- 12 Science, Technology, Engineering, and Mathematics (STEM) teachers with immersive, hands-on research experiences at Universities around the country. The NSF RET in nanotechnology encourages teachers to translate cutting-edge research into culturally relevant Project-Based Learning (PjBL) and engineering curriculum. Traditionally, the evaluation of RET programs focuses on the growth and development of teacher self-efficacy, engineering content knowledge gains, or classroom implementation of developed curriculum materials. However, reported methods for evaluating the impact of RETs on their female, minority student populations' high school graduation and undergraduate STEM major rates are limited. This study's objective was to compare RET high school student graduation rates and undergraduate STEM major rates across gender, race, and ethnicity to a comparison sample to determine the RET program's long-term impact on students' likelihood of pursuing STEM careers. The approach of collecting and analyzing the Texas Education Research Center Database (EdRC) data is a novel methodology for assessing RET programs' effectiveness on students. The EdRC is a repository of K-12 student data from the Texas Education Agency (TEA) and Higher Education data from the Texas Higher Education Coordinating Board (THECB). This jointmore »database contains demographic, course registration, graduation, standardized testing, and college major, among others, for all students that attended a K-12 public school in Texas and any college in Texas, public or private. The RET program participants at Rice University (2010 – 2018) taught numerous students, a sample size of 11,240 students. A propensity score matching generated the student comparison group within the database. Students' school campus, gender, race/ethnic status, and English proficiency status were applied to produce a graduation comparison sample size of 11,240 students of Non-RET participants. Linking the TEA database to the THECB database resulted in college STEM participants and comparison sample sizes of 4,029 students. The project team conducted a logistic regression using RET status to predict high school graduation rates as a whole and by individual variables: gender, Asian American, Black, Caucasian, and Latinx students. All models were significant at p less than 0.05, with models in favor of students RET teachers. The project team conducted a logistic regression using RET status to predict student STEM undergraduate major rates as a whole and by individual variables: Gender, Asian American, Black, Caucasian, and Latinx students. African American and Caucasian models were significant at p less than 0.05; Gender, Asian American, and Latinx models were marginally significant (0.05 less than p greater than 0.1), where RET students had higher STEM major rates than matched controls. The findings demonstrate that RET programs have a long-term positive impact on the students' high school graduation rates and undergraduate STEM major rates. As teachers who participate in the RET programs are more likely to conduct courses using PjBL strategies and incorporate real-world engineering practices, female and minority students are more likely to benefit from these practices and seek careers utilizing these skills.« less