This study analyzed terminal degree and career choices of students who performed undergraduate research. In one analysis, the study compared terminal degree and career choices between a course-based undergraduate research experience (CURE) and traditional non-course-based undergraduate research experiences at one primarily undergraduate institution (PUI). Students who pursued postbaccalaureate programs chose terminal degrees at levels exceeding 75%, with no significant difference between a CURE experience and a traditional research experience. Analysis of terminal degree and career choices at four PUIs providing traditional research experiences showed a marked difference in the number of students pursuing terminal degrees. Two PUIs showed rates > 75%, whereas students at the other two PUIs pursued terminal degrees <50% of the time. The majority of students not pursuing terminal degrees chose M.S. degrees in education and healthcare. An analysis was also performed among students participating in traditional summer undergraduate research on a research-intensive university (RIU) campus with a medical school. Students were accepted from two programs, an NIH IDeA Network of Biomedical Research Excellence (INBRE) program recruiting students from the RIU and an NSF Research Experiences for Undergraduates (REU) program recruiting undergraduates from rural PUIs and minority-serving institutions, particularly tribal colleges. Analysis showed that >70% of the students who pursued postbaccalaureate programs chose terminal degrees. INBRE undergraduates displayed a marked preference for the M.D. degree (73.9% vs. 17.4%), whereas the REU students chose the Ph.D. degree (75.0% vs. 22.9%). American Indian students were also analyzed separately for career choice and showed an equal preference for the M.D. and Ph.D. degrees when pursuing postbaccalaureate education. Overall, the results provide evidence that undergraduate student research stimulates student careers in areas needed by the nation’s citizen stakeholders.
more »
« less
Lessons Learned in Adopting a Multi-Site Combined REU/RET Program for Exclusive Remote Participation Due to the COVID-19 Pandemic
The Smart City Research Experience for Undergraduates (REU) and Research Experience for Teachers (RET) (SCR2) Mega-Site program, which is supported by the National Science Foundation (NSF) (#1849454), was formed in 2018 to address the low participation and graduation rates of post-secondary students belonging to underrepresented minority groups in the engineering field. The participating schools in the program are all minority serving and members of a consortium consisting of 14 Historically Black Colleges and Universities (HBCUs) and 1 Hispanic Serving Institution (HSI), where Morgan State University (MSU) serves as the lead institution. The program targets lower division underperforming REU students who are less likely to have the opportunity to participate in research as undergraduates. Participation in this type of experience has been demonstrated to be transformative and to have the potential to increase retention and graduation rates at these institutions. RET participants are recruited from local community colleges and high schools that serve as feeder schools to the consortium institutions. These teachers are responsible for preparing students who could potentially be interesting in pursuing a college major in engineering by exposing them to hands-on engineering design practices. Over the last two years of the program’s existence, 61 students and 24 teachers have successfully participated. As with most 2020 summer programs, the SCR2 program was challenged by the novel corona virus (COVID-19) pandemic, which hit the United states during the recruitment period of the project. Consequently, the project leadership team decided to offer the summer program remotely (on-line) rather than bring students to the participating three campuses across which the program is distributed. The planning and execution of the program during a global pandemic has brought key insights into techniques, methods, and technologies for effective cross-site communication, faculty advisor/mentor involvement, participant engagement, and leveraging the strong network that connects the participating schools. Essentially, a multi-site remote only combined REU/RET program is efficacious in increasing participant’s confidence, knowledge and desire to pursue further engineering research experiences. This paper presents these insights along with supporting program evaluation findings.
more »
« less
- Award ID(s):
- 1849454
- PAR ID:
- 10366129
- Date Published:
- Journal Name:
- 2021 Fall ASEE Middle Atlantic Section Meeting
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper we describe a joint Research Experience for Undergraduates (REU) and Research Experience for Teachers (RET) program focused on energy and sustainability topics within a Materials Science and Engineering program at a public university. This program brought ten undergraduate science and engineering students and five local middle and high school teachers on campus for an 8-week research experiences working with different lab groups. Given the relatively small number of participants, we chose qualitative interviews as our primary source of data for assessing the effectiveness of this program. The participants identified numerous positive aspects of participating in the summer research program. Students appreciated the sense of community they developed with both the other participants in the research program and the other members of their lab groups. Although most of the participants did not report the summer research experience as having a strong influence on their decisions to pursue graduate school or careers involving research, they did report both being more confident in their ability to be successful as a researcher and appreciating the opportunity to learn more about the practice of engineering research in an academic setting. For the teachers involved in the program we describe how participation influenced their leadership, perceptions of adoption educational innovations, and willingness to provide more opportunities to engage their students in authentic STEM research. The participants also provided several recommendations for improvement to the summer research program. For the students, these included more materials in advance and a more streamlined onboarding process to allow them to get up to speed on their projects more quickly, consistent access to their supervisors, and work that is intellectually challenging. Suggestion from the teacher participants for improvement mostly involved requests for more guidance on how to incorporate what they were learning in their research into lessons for their classrooms. By describing this program and the successes and challenges encountered by the participants and organizers, we intend to help others considering implementing REU/RET programs or other summer research experiences to design and implement successful programs.more » « less
-
Opportunities for undergraduate research in STEM programs at community colleges can be few where lower-division science curriculum emphasizes classroom and laboratory-based learning and research laboratories are limited in number. This is particularly true in the geosciences where specialized programs are extremely rare. Urban serving academic research institutions have a unique role and opportunity to partner with regional community college programs for undergraduate research early-on in student post-secondary educational experiences. Programs built for community college transfer students to urban serving undergraduate programs can serve to integrate students into major programs and help reduce transfer shock. The benefits of exploring research as an undergraduate scholar are numerous and include: building towards mastery of technical skills; developing problem-solving in a real-world environment; reading and digesting scientific literature; analyzing experimental and simulation data; working independently and as part of a team; developing a mentoring relationship with a research advisor; and building a sense of belonging and confidence in a scientific field. However, many undergraduate research internships are targeted towards junior-level STEM majors already engaged in upper-division coursework and considering graduate school which effectively excludes community college students from participating. The Center for Climate and Aerosol Research (CCAR) Research Experience for Undergraduate program at Portland State University serves to help build the future diverse research community. 10-week intern research experiences are paired with an expert faculty mentor are designed for students majoring in the natural/physical sciences but not necessarily with a background in climate or atmospheric science. Additional programmatic activities include: 1-week orientation and training using short courses, faculty research seminars, and hands-on group workshops; academic professional and career development workshops throughout summer; journal club activities; final presentations at end of summer CCAR symposium; opportunities for travel for student presentations at scientific conferences; and social activities. Open to all qualifying undergraduates, since 2014 the program recruits primarily from regional (Northwest) community colleges, rural schools, and Native American serving institutions; recruiting students who would be unlikely to be otherwise exposed to such opportunities at their home institution. Over the past 9 cohorts of REU interns (2014-2019), approximately one third of CCAR REU scholars are community colleges students. Here we present criteria employed for selection of REU scholars and an analysis of selection biases in a comparison of students from community colleges, 4-year colleges, and PhD granting universities. We further investigate differential outcomes in efficacy of the REU program using evaluation data to assess changes over the program including: knowledge, intrinsic motivation, extrinsic motivation, science identity, program satisfaction, and career aspirations. In this presentation, we present these findings along with supportive qualitative analyses and discuss their implications for community college students in undergraduate research programs in geosciences.more » « less
-
With increasing demands for high performance in structural systems, Smart Structures Technologies (SST), which includes advanced sensing, modern control, smart materials, optimization and novel testing, is receiving considerable attention as it has the potential to transform many fields in engineering, including civil, mechanical, aerospace, and geotechnical engineering. Currently, there is a significant gap between the engineering science with fundamental research in academia and engineering practice with potential application in the industry. To respond to this challenge, San Francisco State University and the University of South Carolina will collaborate with industrial partners to establish a Research Experiences for Undergraduates (REU) Site program, focusing on academia-industry collaborations in SST. This REU program will train undergraduate students to serve as the catalysts to facilitate the research infusion between academic and industrial partners. This student-driven joint venture between academia and industry will establish a virtuous circle for knowledge exchange and contribute to advancing both fundamental research and implementation of SST. The program will feature: formal training, workshops, and supplemental activities in the conduct of research in academia and industry; innovative research experience through engagement in projects with scientific and practical merits in both academic and industrial environments; experience in conducting laboratory experiments; and opportunities to present the research outcomes to the broader community at professional settings. This REU program will provide engineering undergraduate students a unique research experience in both academic and industrial settings through cooperative research projects. Experiencing research in both worlds is expected to help students transition from a relatively dependent status to an independent status as their competence level increases. The joint efforts among two institutions and industry partners provide the project team with extensive access to valuable resources, such as expertise to offer a wider-range of informative training workshops, advanced equipment, valuable data sets, experienced undergraduate mentors, and professional connections, that will facilitate a meaningful REU experience. Recruitment of participants will target 20 collaborating minority and primarily undergraduate institutions (15 of them are Hispanic-Serving Institutions, HSI) with limited science, technology, engineering, and mathematics (STEM) research capabilities. The model developed through this program may help to exemplify the establishment of a sustainable collaboration model between academia and industry that helps address the nation's need for mature, independent, informed, and globally competitive STEM professionals and is adapted to other disciplines. In this poster, the details of the program will be described. The challenges and lesson-learned on the collaboration between the two participating universities, communications with industrial partners, recruitment of the students, set up of the evaluation plans, and development of the program will be discussed.more » « less
-
With increasing demands for high performance in structural systems, Smart Structures Technologies (SST), which includes advanced sensing, modern control, smart materials, optimization and novel testing, is receiving considerable attention as it has the potential to transform many fields in engineering, including civil, mechanical, aerospace, and geotechnical engineering. Currently, there is a significant gap between the engineering science with fundamental research in academia and engineering practice with potential application in the industry. To respond to this challenge, San Francisco State University and the University of South Carolina will collaborate with industrial partners to establish a Research Experiences for Undergraduates (REU) Site program, focusing on academia-industry collaborations in SST. This REU program will train undergraduate students to serve as the catalysts to facilitate the research infusion between academic and industrial partners. This student-driven joint venture between academia and industry will establish a virtuous circle for knowledge exchange and contribute to advancing both fundamental research and implementation of SST. The program will feature: formal training, workshops, and supplemental activities in the conduct of research in academia and industry; innovative research experience through engagement in projects with scientific and practical merits in both academic and industrial environments; experience in conducting laboratory experiments; and opportunities to present the research outcomes to the broader community at professional settings. This REU program will provide engineering undergraduate students a unique research experience in both academic and industrial settings through cooperative research projects. Experiencing research in both worlds is expected to help students transition from a relatively dependent status to an independent status as their competence level increases. The joint efforts among two institutions and industry partners provide the project team with extensive access to valuable resources, such as expertise to offer a wider-range of informative training workshops, advanced equipment, valuable data sets, experienced undergraduate mentors, and professional connections, that will facilitate a meaningful REU experience. Recruitment of participants will target 20 collaborating minority and primarily undergraduate institutions (15 of them are Hispanic-Serving Institutions, HSI) with limited science, technology, engineering, and mathematics (STEM) research capabilities. The model developed through this program may help to exemplify the establishment of a sustainable collaboration model between academia and industry that helps address the nation's need for mature, independent, informed, and globally competitive STEM professionals and is adapted to other disciplines. In this poster, the details of the program will be described. The challenges and lesson-learned on the collaboration between the two participating universities, communications with industrial partners, recruitment of the students, set up of the evaluation plans, and development of the program will be discussed.more » « less