skip to main content


Title: Dynamics of upwelling annual cycle in the equatorial Atlantic Ocean: Upwelling Annual Cycle
PAR ID:
10084900
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
44
Issue:
8
ISSN:
0094-8276
Page Range / eLocation ID:
p. 3737-3743
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The iron (Fe) supply to phytoplankton communities in the Southern Ocean surface exerts a strong control on oceanic carbon storage and global climate. Hydrothermal vents are one potential Fe source to this region, but it is not known whether hydrothermal Fe persists in seawater long enough to reach the surface before it is removed by particle scavenging. A new study (Jenkins, 2020,https://doi.org/10.1029/2020GL087266) fills an important gap in this puzzle: a helium‐3 mass balance model is used to show that it takes ~100 yr for deep hydrothermally influenced waters to upwell to the surface around Antarctica. However, estimates of Fe scavenging time scales range from tens to hundreds of years and must be more narrowly constrained to fully resolve the role of hydrothermal Fe in the ocean's biological pump.

     
    more » « less
  2. Abstract. The total Antarctic sea ice extent (SIE) experiences a distinct annual cycle, peaking in September and reaching its minimum in February. In thispaper we propose a mathematical and statistical decomposition of this temporal variation inSIE. Each component is interpretable and, when combined,gives a complete picture of the variation in the sea ice. We consider timescales varying from the instantaneous and not previously defined to themulti-decadal curvilinear trend, the longest. Because our representation is daily, these timescales of variability give precise information about thetiming and rates of advance and retreat of the ice and may be used to diagnose physical contributors to variability in the sea ice. We definea number of annual cycles each capturing different components of variation, especially the yearly amplitude and phase that are major contributors toSIE variation. Using daily sea ice concentration data, we show that our proposed invariant annual cycle explains 29 % more of the variation indaily SIE than the traditional method. The proposed annual cycle that incorporates amplitude and phase variation explains 77 % more variation thanthe traditional method. The variation in phase explains more of the variability in SIE than the amplitude. Using our methodology, we show that theanomalous decay of sea ice in 2016 was associated largely with a change of phase rather than amplitude. We show that the long term trend inAntarctic sea ice extent is strongly curvilinear and the reported positive linear trend is small and dependent strongly on a positive trend thatbegan around 2011 and continued until 2016. 
    more » « less