skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Neural Cache: Bit-Serial In-Cache Acceleration of Deep Neural Networks
Award ID(s):
1652294
PAR ID:
10085027
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
The 45th Annual International Symposium on Computer Architecture
Page Range / eLocation ID:
383 to 396
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Cache side-channel attacks aim to breach the confidentiality of a computer system and extract sensitive secrets through CPU caches. In the past years, different types of side-channel attacks targeting a variety of cache architectures have been demonstrated. Meanwhile, different defense methods and systems have also been designed to mitigate these attacks. However, quantitatively evaluating the effectiveness of these attacks and defenses has been challenging. We propose a generic approach to evaluating cache side-channel attacks and defenses. Specifically, our method builds a deep neural network with its inputs as the adversary's observed information, and its outputs as the victim's execution traces. By training the neural network, the relationship between the inputs and outputs can be automatically discovered. As a result, the prediction accuracy of the neural network can serve as a metric to quantify how much information the adversary can obtain correctly, and how effective a defense solution is in reducing the information leakage under different attack scenarios. Our evaluation suggests that the proposed method can effectively evaluate different attacks and defenses. 
    more » « less
  2. Finite State Automata are widely used to accelerate pattern matching in many emerging application domains like DNA sequencing and XML parsing. Conventional CPUs and compute-centric accelerators are bottlenecked by memory bandwidth and irregular memory access patterns in automata processing. We present Cache Automaton, which repurposes last-level cache for automata processing, and a compiler that automates the process of mapping large real world Non-Deterministic Finite Automata (NFAs) to the proposed architecture. Cache Automaton extends a conventional last-level cache architecture with components to accelerate two phases in NFA processing: state-match and state-transition. State-matching is made efficient using a sense-amplifier cycling technique that exploits spatial locality in symbol matches. State-transition is made efficient using a new compact switch architecture. By overlapping these two phases for adjacent symbols we realize an efficient pipelined design. We evaluate two designs, one optimized for performance and the other optimized for space, across a set of 20 diverse benchmarks. The performance optimized design provides a speedup of 15× over DRAM-based Micron's Automata Processor and 3840× speedup over processing in a conventional x86 CPU. The proposed design utilizes on an average 1.2MB of cache space across benchmarks, while consuming 2.3nJ of energy per input symbol. Our space optimized design can reduce the cache utilization to 0.72MB, while still providing a speedup of 9× over AP. 
    more » « less