skip to main content


Title: Economic Benefit Comparison of D-FACTS and FACTS in Transmission Networks with Uncertainties
Distributed flexible AC transmission systems (D-FACTS) has become increasingly popular in recent years. Among all types of D-FACTS devices, variable-impedance D-FACTS is the most cost-effective. However, integration of these devices within an optimal power flow problem introduces nonlinearities that are computationally challenging. In this study, a computationally efficient stochastic optimization model is proposed to optimally allocate variable-impedance D-FACTS considering the randomness of wind power output and load variation. The optimal locations and economic benefits of D-FACTS are compared with those of conventional FACTS. The results show that D-FACTS devices are more cost-effective than conventional FACTS, considering complex operation conditions in a transmission network. The economic benefits will increase if periodical redeployment of D-FACTS is allowed.  more » « less
Award ID(s):
1756006
NSF-PAR ID:
10085406
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2018 IEEE Power & Energy Society General Meeting (PESGM)
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Distributed flexible AC transmission systems (D-FACTS) is an attractive power flow control technology, featuring low cost and flexibility for re-deployment. Optimal allocation of D-FACTS and the mutual influence between existing FACTS and newly planned D-FACTS are challenging but important issues that need to be addressed. This paper proposes a co-optimization model of FACTS and D-FACTS based on stochastic optimization, considering the uncertainties caused by fluctuating load and renewable energy generation. Using this model, the location and set points of FACTS and D-FACTS can be co-optimized; in a system with existing FACTS, the locations of FACTS can be predetermined and the locations of D-FACTS can be optimized. The study shows that existing FACTS affects the optimal locations of D-FACTS and adding D-FACTS into the system affects the optimal set points of existing FACTS. Thus, it is essential to co-optimize the two technologies to maximize their economic benefits. 
    more » « less
  2. This work proposes a moving target defense (MTD) strategy to detect coordinated cyber-physical attacks (CCPAs) against power grids. A CCPA consists of a physical attack, such as disconnecting a transmission line, followed by a coordinated cyber attack that injects false data into the sensor measurements to mask the effects of the physical attack. Such attacks can lead to undetectable line outages and cause significant damage to the grid. The main idea of the proposed approach is to invalidate the knowledge that the attackers use to mask the effects of the physical attack by actively perturbing the grid’s transmission line reactances using distributed flexible AC transmission system (D-FACTS) devices. We identify the MTD design criteria in this context to thwart CCPAs. The proposed MTD design consists of two parts. First, we identify the subset of links for D-FACTS device deployment that enables the defender to detect CCPAs against any link in the system. Then, in order to minimize the defense cost during the system’s operational time, we use a game-theoretic approach to identify the best subset of links (within the D-FACTS deployment set) to perturb which will provide adequate protection. Extensive simulations performed using the MATPOWER simulator on IEEE bus systems verify the effectiveness of our approach in detecting CCPAs and reducing the operator’s defense cost. 
    more » « less
  3. Powered knee-ankle prostheses can offer benefits over conventional passive devices during stair locomotion by providing biomimetic net-positive work and active control of joint angles. However, many modern control approaches for stair ascent and descent are often limited by time-consuming hand-tuning of user/task-specific parameters, predefined trajectories that remove user volition, or heuristic approaches that cannot be applied to both stair ascent and descent. This work presents a phase-based hybrid kinematic and impedance controller (HKIC) that allows for semi-volitional, biomimetic stair ascent and descent at a variety of step heights. We define a unified phase variable for both stair ascent and descent that utilizes lower-limb geometry to adjust to different users and step heights. We extend our prior data-driven impedance model for variable-incline walking, modifying the cost function and constraints to create a continuously-varying impedance parameter model for stair ascent and descent over a continuum of step heights. Experiments with above-knee amputee participants (N=2) validate that our HKIC controller produces biomimetic ascent and descent joint kinematics, kinetics, and work across four step height configurations. We also show improved kinematic performance with our HKIC controller in comparison to a passive microprocessor-controlled device during stair locomotion. 
    more » « less
  4. Integrating renewable energy into the manufacturing facility is the ultimate key to realising carbon-neutral operations. Although many firms have taken various initiatives to reduce the carbon footprint of their facilities, there are few quantitative studies focused on cost analysis and supply reliability of integrating intermittent wind and solar power. This paper aims to fill this gap by addressing the following question: shall we adopt power purchase agreement (PPA) or onsite renewable generation to realise the eco-economic benefits? We tackle this complex decision-making problem by considering two regulatory options: government carbon incentives and utility pricing policy. A stochastic programming model is formulated to search for the optimal mix of onsite and offsite renewable power supply. The model is tested extensively in different regions under various climatic conditions. Three findings are obtained. First, in a long term onsite generation and PPA can avoid the price volatility in the spot or wholesale electricity market. Second, at locations where the wind speed is below 6 m/s, PPA at $70/MWh is preferred over onsite wind generation. Third, compared to PPA and wind generation, solar generation is not economically competitive unless the capacity cost is down below USD1.5 M per MW. 
    more » « less
  5. null (Ed.)
    This article presents the state-of-the-art application of a Unified Power Flow Controller (UPFC) to directly interface ocean wave energy converters (WEC) with the utility grid. It is shown that the transformer flux saturation problem at variable low-frequency operation poses no technical issue for the ocean power applications because a direct-proportionality relationship exists between frequency and amplitude of the WEC output voltages. We have proposed a direct interface of WEC with the utility grid using a series compensation transformer of the UPFC controller. The shunt input rectification segment of the UPFC acts not only as the DC bus for the UFPC operation but also as an embedded energy storage stage for the WEC. The mathematical formulation and simulation results are presented as a proof-of- concept for FACTS-based WEC-grid integration with the integrated energy storage capability. 
    more » « less