skip to main content


Title: Copper‐Catalyzed C(sp 3 )−H Amidation: Sterically Driven Primary and Secondary C−H Site‐Selectivity
Abstract

Undirected C(sp3)−H functionalization reactions often follow site‐selectivity patterns that mirror the corresponding C−H bond dissociation energies (BDEs). This often results in the functionalization of weaker tertiary C−H bonds in the presence of stronger secondary and primary bonds. An important, contemporary challenge is the development of catalyst systems capable of selectively functionalizing stronger primary and secondary C−H bonds over tertiary and benzylic C−H sites. Herein, we report a Cu catalyst that exhibits a high degree of primary and secondary over tertiary C−H bond selectivity in the amidation of linear and cyclic hydrocarbons with aroyl azides ArC(O)N3. Mechanistic and DFT studies indicate that C−H amidation involves H‐atom abstraction from R‐H substrates by nitrene intermediates [Cu](κ2N,O‐NC(O)Ar) to provide carbon‐based radicals R.and copper(II)amide intermediates [CuII]‐NHC(O)Ar that subsequently capture radicals R.to form products R‐NHC(O)Ar. These studies reveal important catalyst features required to achieve primary and secondary C−H amidation selectivity in the absence of directing groups.

 
more » « less
Award ID(s):
1665348
NSF-PAR ID:
10085418
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
58
Issue:
11
ISSN:
1433-7851
Page Range / eLocation ID:
p. 3421-3425
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Undirected C(sp3)−H functionalization reactions often follow site‐selectivity patterns that mirror the corresponding C−H bond dissociation energies (BDEs). This often results in the functionalization of weaker tertiary C−H bonds in the presence of stronger secondary and primary bonds. An important, contemporary challenge is the development of catalyst systems capable of selectively functionalizing stronger primary and secondary C−H bonds over tertiary and benzylic C−H sites. Herein, we report a Cu catalyst that exhibits a high degree of primary and secondary over tertiary C−H bond selectivity in the amidation of linear and cyclic hydrocarbons with aroyl azides ArC(O)N3. Mechanistic and DFT studies indicate that C−H amidation involves H‐atom abstraction from R‐H substrates by nitrene intermediates [Cu](κ2N,O‐NC(O)Ar) to provide carbon‐based radicals R.and copper(II)amide intermediates [CuII]‐NHC(O)Ar that subsequently capture radicals R.to form products R‐NHC(O)Ar. These studies reveal important catalyst features required to achieve primary and secondary C−H amidation selectivity in the absence of directing groups.

     
    more » « less
  2. Commercially available benzophenone imine (HNCPh 2 ) reacts with β-diketiminato copper( ii ) tert -butoxide complexes [Cu II ]–O t Bu to form isolable copper( ii ) ketimides [Cu II ]–NCPh 2 . Structural characterization of the three coordinate copper( ii ) ketimide [Me 3 NN]Cu–NCPh 2 reveals a short Cu-N ketimide distance (1.700(2) Å) with a nearly linear Cu–N–C linkage (178.9(2)°). Copper( ii ) ketimides [Cu II ]–NCPh 2 readily capture alkyl radicals R˙ (PhCH(˙)Me and Cy˙) to form the corresponding R–NCPh 2 products in a process that competes with N–N coupling of copper( ii ) ketimides [Cu II ]–NCPh 2 to form the azine Ph 2 CN–NCPh 2 . Copper( ii ) ketimides [Cu II ]–NCAr 2 serve as intermediates in catalytic sp 3 C–H amination of substrates R–H with ketimines HNCAr 2 and t BuOO t Bu as oxidant to form N -alkyl ketimines R–NCAr 2 . This protocol enables the use of unactivated sp 3 C–H bonds to give R–NCAr 2 products easily converted to primary amines R–NH 2 via simple acidic deprotection. 
    more » « less
  3. Chlorine radicals readily activate C-H bonds, but the high reactivity of these intermediates precludes their use in regioselective C-H functionalization reactions. We demonstrate that the secondary coordination sphere of a metal complex can confine photoeliminated chlorine radicals and afford steric control over their reactivity. Specifically, a series of iron(III) chloride pyridinediimine complexes exhibit activity for photochemical C(sp(3))-H chlorination and bromination with selectivity for primary and secondary C-H bonds, overriding thermodynamic preference for weaker tertiary C-H bonds. Transient absorption spectroscopy reveals that Cl center dot remains confined through formation of a Cl center dot larene complex with aromatic groups on the pyridinediimine ligand. Furthermore, photocrystallography confirms that this selectivity arises from the generation of Cl center dot within the steric environment defined by the iron secondary coordination sphere. 
    more » « less
  4. Abstract

    Paired redox‐neutral electrolysis offers an attractive green platform for organic synthesis by avoiding sacrificial oxidants and reductants. Carboxylates are non‐toxic, stable, inexpensive, and widely available, making them ideal nucleophiles for C−C cross‐coupling reactions. Here, we report the electro/Ni dual‐catalyzed redox‐neutral decarboxylative C(sp3)−C(sp2) cross‐coupling reactions of pristine carboxylates with aryl bromides. At a cathode, a NiII(Ar)(Br) intermediate is formed through the activation of Ar−Br bond by a NiI‐bipyridine catalyst and subsequent reduction. At an anode, the carboxylates, including amino acid, benzyl carboxylic acid, and 2‐phenoxy propionic acid, undergo oxidative decarboxylation to form carbon‐based free radicals. The combination of NiII(Ar)(Br) intermediate and carbon radical results in the formation of C(sp3)−C(sp2) cross‐coupling products. The adaptation of this electrosynthesis method to flow synthesis and valuable molecule synthesis was demonstrated. The reaction mechanism was systematically studied through electrochemical voltammetry and density functional theory (DFT) computational studies. The relationships between the electrochemical properties of carboxylates and the reaction selectivity were revealed. The electro/Ni dual‐catalyzed cross‐coupling reactions described herein expand the chemical space of paired electrochemical C(sp3)−C(sp2) cross‐coupling and represent a promising method for the construction of the C(sp3)−C(sp2) bonds because of the ubiquitous carboxylate nucleophiles and the innate scalability and flexibility of electrochemical flow‐synthesis technology.

     
    more » « less
  5. Abstract

    What happens when a C−H bond is forced to interact with unpaired pairs of electrons at a positively charged metal? Such interactions can be considered as “contra‐electrostatic” H‐bonds, which combine the familiar orbital interaction pattern characteristic for the covalent contribution to the conventional H‐bonding with an unusual contra‐electrostatic component. While electrostatics is strongly stabilizing component in the conventional C−H⋅⋅⋅X bonds where X is an electronegative main group element, it is destabilizing in the C−H⋅⋅⋅M contacts when M is Au(I), Ag(I), or Cu(I) of NHC−M−Cl systems. Such remarkable C−H⋅⋅⋅M interaction became experimentally accessible within (α‐ICyDMe)MCl, NHC‐Metal complexes embedded into cyclodextrins. Computational analysis of the model systems suggests that the overall interaction energies are relatively insensitive to moderate variations in the directionality of interaction between a C−H bond and the metal center, indicating stereoelectronic promiscuity of fully filled set ofd‐orbitals. A combination of experimental and computational data demonstrates that metal encapsulation inside the cyclodextrin cavity forces the C−H bond to point toward the metal, and reveals a still attractive “contra‐electrostatic” H‐bonding interaction.

     
    more » « less