skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Agent-Based Modelling Approach for Developing Enforcement Mechanisms in Spectrum Sharing Scenarios: An application for the 1695-1710MHz band
As radio spectrum sharing matures, one of the main challenges becomes finding adequate governance systems and the appropriate enforcement mechanisms. Historically, these processes were assigned to a central entity (in most cases a governmental agency). Nevertheless, the literature of Common Pool Resources (CPRs) shows that other governance mechanisms are possible, which include collaboration with a private, thirdparty regulator or the complete absence of central institutions, as in self-enforcement solutions. These alternatives have been developed around well-known CPRs such as fisheries, forests, etc. As argued by Weiss et al [50], and other researchers, spectrum can indeed be considered to be a CPR. In this work we study the two extremes of governance systems that could be applied to spectrum sharing scenarios. Initially, we study the classical centralized scheme of command and control, where governmental institutions are in charge of rule-definition and enforcement. Subsequently, we explore a government-less environment, i.e., a distributed enforcement approach. In this anarchy situation (i.e., lack of a formal government intervention as defined by Leeson [29]), rules and enforcement mechanisms are solely the product of repeated interactions among the intervening agents. For our analysis, we have selected the spectrum sharing framework of the 1695-1710MHz band. We also use the definitions presented by Bhattarai et al. [9], [10] as well as Altamimi [3] for managing the size of the coordination and exclusion zones. In addition, we utilize Agent-Based Modelling (ABM) to analyze the applicability of these governance mechanisms. ABM simulation allows us to explore how macro phenomena can emerge from micro-level interactions of independent agents.  more » « less
Award ID(s):
1642949
NSF-PAR ID:
10085494
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Telecommunications Policy Research Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The exploitation of radio-electric spectrum bands for wireless transmission purposes has some features of the commons: it is subject to congestion and conflict without rules governing its use. The Coasean approach is to assign private property rights to overcome the tragedy of the spectrum commons. The process of assigning these rights is still centralized, with governments assigning property rights through agencies such as the Federal Communications Commission and National Telecommunications and Information Administration in the USA. We consider the possibility of self-governance of the spectrum. We use insights from the study of common pool resources governance to analyze the emergence of property rights to spectrum in a ‘government-less’ environment in which norms, rules, and enforcement mechanisms are solely the product of the repeated interactions among participants in the network. Our case study considers the spectrum-sharing arrangement in the 1,695–1,710 MHz band. Using agent-based modeling (ABM), we show that self-governance of the spectrum can work and under what conditions it is likely to improve the efficiency of the allocation of property rights. 
    more » « less
  2. Traditionally, spectrum allocation has been governed by centralized schemes (e.g., command-and-control). Nonetheless, other mechanisms, such as collaborative enforcement, have proven to be successful in a variety of scenarios. In Collaborative enforcement (i.e., collective action), the stakeholders agree on decision-making arrangements (i.e., access, allocation, and control of the resources) while being involved in monitoring the adherence to the rules as a shared effort. Blockchain is a distributed ledger of records/transactions (i.e., database) that brings many benefits such as decentralization, transparency, immutability, etc. One of the most notable characteristics of blockchain-based platforms is their definition as trust-less environments, as there is no central entity in charge of controlling the network interactions. Instead, trust is a group effort, achieved through repeated interactions, consensus algorithms, and cryptographic tools; therefore, converting blockchain systems into examples of collaborative governance regimes. In this paper, our goal is to analyze a particular application of blockchain and smart contracts for the 1695-1710MHz sharing scenario. In this way, we provide a theoretical analysis of the feasibility and the required characteristics to implement such a system. In addition, through the implementation of a Proof of Concept, we explore how the implementation of a blockchainbased organization can be the motor to build a collaborative governance scheme in the spectrum sharing arrangement of the 1695-1710MHz band 
    more » « less
  3. Policies and regulations governing electromagnetic spectrum prioritize reducing conflict among active users of spectrum (transmitters), thereby enabling these active users to capture the values associated with property rights to spectrum. Coexistence of heterogeneous technologies and their enforcement have been well studied, but much less has been done to consider the coexistence of heterogeneous uses and the institutions that are necessary to address conflict arising among different users of spectrum.We argue that prevailing property-rights institutions that focus on reducing conflict among active users of spectrum generate a property mismatch that contributes to conflict with passive users of spectrum. Passive users are interested primarily in receiving signals transmitted by nature. The property-mismatch approach offers insight into how to redesign spectrum governance to balance the demands of both active and passive users. Particularly we argue that virtual parceling of the electromagnetic spectrum along a broader range of dimensions can better facilitate efficient spectrum sharing between active and passive users. 
    more » « less
  4. In many countries, sharing has become a significant approach to problems of spectrum allocation and assignment. As this approach moves from concept to reality, it is reasonable to expect an increase in interference or usage conflict events between sharing parties. Scholars such as Coase, Demsetz, Stigler, and others have argued that appropriate enforcement is critical to successful contracts (such as spectrum sharing agreements) and Polinsky, Shavell, and others have analyzed enforcement mechanisms in general. While many ex-ante measures may be used, reducing the social costs of ex-ante enforcement means shifting the balance more toward ex-post measures. Ex post enforcement requires detection, data collection, and adjudication methods. At present, these methods are ad hoc (operating in a decentralized way between parties) or fairly costly (e.g., relying on the FCC Enforcement Bureau). The research presented in this paper is the culmination of an NSF-funded inquiry into how and what enforcement functions can be automated. 
    more » « less
  5. null (Ed.)
    n many countries, sharing has become a significant approach to problems of spectrum allocation and assignment. As this approach moves from concept to reality, it is reasonable to expect an increase in interference or usage conflict events between sharing parties. Scholars such as Coase, Demsetz, Stigler, and others have argued that appropriate enforcement is critical to successful contracts (such as spectrum sharing agreements) and Polinsky, Shavell, and others have analyzed enforcement mechanisms in general. While many ex-ante measures may be used, reducing the social costs of ex-ante enforcement means shifting the balance more toward ex-post measures. Ex post enforcement requires detection, data collection, and adjudication methods. At present, these methods are ad hoc (operating in a decentralized way between parties) or fairly costly (e.g., relying on the FCC Enforcement Bureau). The research presented in this paper is the culmination of an NSF-funded inquiry into how and what enforcement functions can be automated. 
    more » « less