skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Antibacterial Activity of Polymers: Discussions on the Nature of Amphiphilic Balance
Abstract The purpose of this Viewpoint is to discuss the molecular design principles that guide development of synthetic antimicrobial polymers, especially those intended to mimic the structure of host defense peptides (HDPs). In particular, we focus on the principle of “amphiphilic balance” as it relates to some recently developed polyphosphoniums with somewhat atypical structure. We find that the fundamental concept of amphiphilic balance is still applicable to these new polymers, but that the method to achieve such balance is somewhat unique. We then briefly outline the future challenges and opportunities in this field.  more » « less
Award ID(s):
1653418
PAR ID:
10085906
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie
Volume:
131
Issue:
12
ISSN:
0044-8249
Page Range / eLocation ID:
p. 3728-3731
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Using atomistic molecular dynamics simulations, we study the interaction of ternary methacrylate polymers, composed of charged cationic, hydrophobic and neutral polar groups, with model bacterial membrane. Our simulation data shows that the random ternary polymers can penetrate deep into the membrane interior and partitioning of even a single polymer has a pronounced effect on the membrane structure. Lipid reorganization, on polymer binding, shows a strong affinity of the ternary polymer for anionic POPG lipids and the same is compared with the control case of binary polymers (only cationic and hydrophobic groups). While binary polymers exhibit strong propensity of acquired amphiphilic conformations upon membrane insertion, our results strongly suggest that such amphiphilic conformations are absent in the case of random ternary polymers. The ternary polymers adopt a more folded conformation, staying aligned in the direction of the membrane normal and subsequently penetrating deeper into the membrane interior suggesting a novel membrane partitioning mechanism without amphiphilic conformations. Finally, we also examine the interactions of ternary polymer aggregates with model bacterial membranes, which show that replacing some of the hydrophobic groups by polar groups leads to weakly held ternary aggregates enabling them to undergo rapid partitioning and insertion into membrane interior. Our work thus underscores the role of inclusion of polar groups into the framework of traditional binary biomimetic antimicrobial polymers and suggests different mode of partitioning into bacterial membranes, mimicking antimicrobial mechanism of globular antimicrobial peptides like Defensin. 
    more » « less
  2. Abstract Amphiphilic drugs are molecular drugs or drug conjugates possessing both hydrophilic and lipophilic properties. Representative amphiphilic drugs are composed of a pharmaceutical payload, a linker, and an appropriate amphiphilic modification. The physicochemical properties of amphiphilic drugs can be tailored by structure‐based engineering, which ultimately determine the drug molecules’ self‐assemble ability, bioavailability, protein binding, membrane anchoring, organ and intracellular distributions, side effects, and biological efficacy. Unlike the traditional carrier‐assistant drug delivery system, many of the amphiphilic drugs are carrier‐free and can self‐deliver to target sites/cells and access intracellular organelles without an external delivery carrier. This is achieved by molecular designs that control the delivery pathways of amphiphilic drugs at organ/tissue, cellular, and intracellular levels. In this review the recent advances in self‐delivery amphiphilic drugs and vaccines are highlighted, with emphasis on the underlying design principles and emerging applications. 
    more » « less
  3. Abstract Approaches to achieve stable perovskite nanocrystals (PNCs) of interest, in particular those with large structural anisotropy, through protective coating of the inorganic shell at a single‐nanocrystal (NC) level are comparatively few and limited in scope. Reported here is a robust amphiphilic‐diblock‐copolymer‐enabled strategy for crafting highly‐stableanisotropicCsPbBr3nanosheets (NSs) by in situ formation of a uniform inorganic shell (1st shielding) that is intimately ligated with hydrophobic polymers (2nd shielding). The dual‐protected NSs display an array of remarkable stabilities (i.e., thermal, photostability, moisture, polar solvent, aliphatic amine, etc.) and find application in white‐light‐emitting diodes. In principle, by anchoring other multidentate amphiphilic polymer ligands on the surface of PNCs, followed by templated‐growth of shell materials of interest, a rich variety of dual‐shelled, multifunctional PNCs with markedly improved stabilities can be created for use in optics, optoelectronics, and sensory devices. 
    more » « less
  4. Abstract Thermogels that exhibit a sol‐gel transition at body temperature represent a promising class of injectable biomaterials for biomedical applications. Thermogels reported thus far are generally composed of amphiphilic block copolymer micelles with an isotropic thermosensitive surface that induces intermicellar aggregation upon heating. Despite the promise, these hydrogels exhibit low mechanical strengths due to their uncontrollable aggregation resulting in void formation. To gain better control over intermicellar assembly, herein a novel thermogel design concept is presented based on patchy polymeric micelles bearing multiple thermosensitive surface domains. These domains serve as “patches” to bridge the micelles to form a percolated network structure. Patchy micelles are prepared from a binary mixture of amphiphilic block copolymers: Poly(N‐acryloylmorpholine)‐b‐poly(N‐benzylacrylamide) (PAM‐PBzAM) and poly (N‐isopropyl acrylamide)‐b‐poly(N‐benzylacrylamide) (PNIPAM‐PBzAM), where PBzAM, PAM and PNIPAM are the hydrophobic, hydrophilic and thermosensitive blocks, respectively. At 25 °C, the polymers self‐assembled into mixed shell micelles having a phase‐separated shell with PAM‐ and PNIPAM‐rich domains. At 37 °C, the PNIPAM domains undergo a hydrophilic‐to‐hydrophobic transition to induce intermicellar assembly into entangled worm‐like structures resulting in hydrogel formation. Patchy micelles form a homogeneous network structure without voids. The micelle design significantly affects the inter‐micellar assembly, the thermogelling behavior, and the mechanical properties of the hydrogels. 
    more » « less
  5. Abstract The synthesis of stereoregular telechelic polypropylene (PP) and their use to access triblock amphiphilic copolymers with the PP block located in the center is described. The strategy consists of selectively copolymerizing propylene and a di‐functional co‐monomer (1,3‐diisopropenylbenzene) to yield a α,ω‐substituted polypropylene. Initiation of the copolymerization favors insertion of DIB over propylene; propagation steps favor insertion of propylene. Termination via a chain‐transfer reaction yields the terminal unsaturation of the polymer. The telechelic polypropylene is then converted into α,ω‐hydroxyl‐terminated polypropylene and used as a macroinitiator for the synthesis of triblock copolymers. Water‐soluble amphiphilic triblock polymers are also synthesized. The use of catalytic reactions simultaneously provides the stereocontrol of the polypropylene and high productivity (multiple chains of block copolymer per metal center). 
    more » « less