skip to main content

Title: Towards designing globular antimicrobial peptide mimics: role of polar functional groups in biomimetic ternary antimicrobial polymers
Using atomistic molecular dynamics simulations, we study the interaction of ternary methacrylate polymers, composed of charged cationic, hydrophobic and neutral polar groups, with model bacterial membrane. Our simulation data shows that the random ternary polymers can penetrate deep into the membrane interior and partitioning of even a single polymer has a pronounced effect on the membrane structure. Lipid reorganization, on polymer binding, shows a strong affinity of the ternary polymer for anionic POPG lipids and the same is compared with the control case of binary polymers (only cationic and hydrophobic groups). While binary polymers exhibit strong propensity of acquired amphiphilic conformations upon membrane insertion, our results strongly suggest that such amphiphilic conformations are absent in the case of random ternary polymers. The ternary polymers adopt a more folded conformation, staying aligned in the direction of the membrane normal and subsequently penetrating deeper into the membrane interior suggesting a novel membrane partitioning mechanism without amphiphilic conformations. Finally, we also examine the interactions of ternary polymer aggregates with model bacterial membranes, which show that replacing some of the hydrophobic groups by polar groups leads to weakly held ternary aggregates enabling them to undergo rapid partitioning and insertion into membrane interior. Our work more » thus underscores the role of inclusion of polar groups into the framework of traditional binary biomimetic antimicrobial polymers and suggests different mode of partitioning into bacterial membranes, mimicking antimicrobial mechanism of globular antimicrobial peptides like Defensin. « less
Authors:
; ;
Award ID(s):
2004305
Publication Date:
NSF-PAR ID:
10226727
Journal Name:
Soft Matter
Volume:
17
Issue:
8
Page Range or eLocation-ID:
2090 to 2103
ISSN:
1744-683X
Sponsoring Org:
National Science Foundation
More Like this
  1. Herein we report the synthesis of ternary statistical methacrylate copolymers comprising cationic ammonium (amino-ethyl methacrylate: AEMA), carboxylic acid (propanoic acid methacrylate: PAMA) and hydrophobic (ethyl methacrylate: EMA) side chain monomers, to study the functional role of anionic groups on their antimicrobial and hemolytic activities as well as the conformation of polymer chains. The hydrophobic monomer EMA was maintained at 40 mol% in all the polymers, with different percentages of cationic ammonium (AEMA) and anionic carboxylate (PAMA) side chains, resulting in different total net charge for the polymers. The antimicrobial and hemolytic activities of the copolymer were determined by the netmore »charge of +3 or larger, suggesting that there was no distinct effect of the anionic carboxylate groups on the antimicrobial and hemolytic activities of the copolymers. However, the pH titration and atomic molecular dynamics simulations suggest that anionic groups may play a strong role in controlling the polymer conformation. This was achieved via formation of salt bridges between cationic and anionic groups, transiently crosslinking the polymer chain allowing dynamic switching between compact and extended conformations. These results suggest that inclusion of functional groups in general, other than the canonical hydrophobic and cationic groups in antimicrobial agents, may have broader implications in acquiring functional structures required for adequate antimicrobial activity. In order to explain the implications, we propose a molecular model in which formation of intra-chain, transient salt bridges, due to the presence of both anionic and cationic groups along the polymer, may function as “adhesives” which facilitate compact packing of the polymer chain to enable functional group interaction but without rigidly locking down the overall polymer structure, which may adversely affect their functional roles.« less
  2. Cationic and amphiphilic polymers are known to exert broad-spectrum antibacterial activity by a putative mechanism of membrane disruption. Typically, nonspecific binding to hydrophobic components of the complex biological milieu, such as globular proteins, is considered a deterrent to the successful application of such polymers. To evaluate the extent to which serum deactivates antibacterial polymethacrylates, we compared their minimum inhibitory concentrations in the presence and absence of fetal bovine serum. Surprisingly, we discovered that the addition of fetal bovine serum (FBS) to the assay media in fact enhances the antimicrobial activity of polymers against Gram-positive bacteria S. aureus, whereas the oppositemore »is the case for Gram-negative E. coli. Here, we present these unexpected trends and develop a hypothesis to potentially explain this unusual phenomenon.« less
  3. Superresolution, single-particle tracking reveals effects of the cationic antimicrobial peptide LL-37 on theEscherichia colicytoplasm. Seconds after LL-37 penetrates the cytoplasmic membrane, the chromosomal DNA becomes rigidified on a length scale of ∼30 nm, evidenced by the loss of jiggling motion of specific DNA markers. The diffusive motion of a subset of ribosomes is also frozen. The mean diffusion coefficients of the DNA-binding protein HU and the nonendogenous protein Kaede decrease twofold. Roughly 108LL-37 copies flood the cell (mean concentration ∼90 mM). Much of the LL-37 remains bound within the cell after extensive rinsing with fresh growth medium. Growth never recovers.more »The results suggest that the high concentration of adsorbed polycationic peptides forms a dense network of noncovalent, electrostatic linkages within the chromosomal DNA and among 70S-polysomes. The bacterial cytoplasm comprises a concentrated collection of biopolymers that are predominantly polyanionic (e.g., DNA, ribosomes, RNA, and most globular proteins). In normal cells, this provides a kind of electrostatic lubrication, enabling facile diffusion despite high biopolymer volume fraction. However, this same polyanionic nature renders the cytoplasm susceptible to massive adsorption of polycationic agents once penetration of the membranes occurs. If this phenomenon proves widespread across cationic agents and bacterial species, it will help explain why resistance to antimicrobial peptides develops only slowly. The results suggest two design criteria for polycationic peptides that efficiently kill gram-negative bacteria: facile penetration of the outer membrane and the ability to alter the cytoplasm by electrostatically linking double-stranded DNA and 70S-polysomes.

    « less
  4. Antimicrobial resistance is a world-wide health care crisis. New antimicrobials must both exhibit potency and thwart the ability of bacteria to develop resistance to them. We report the use of synthetic ionophores as a new approach to developing non-resistant antimicrobials and adjuvants. Most studies involving amphiphilic antimicrobials have focused on either developing synthetic amphiphiles that show ion transport, or developing non-cytotoxic analogs of such peptidic amphiphiles as colistin. We have rationally designed, prepared, and evaluated crown ether-based synthetic ionophores (‘hydraphiles’) that show selective ion transport through bilayer membranes and are toxic to bacteria. We report here that hydraphiles exhibit amore »broad range of antimicrobial properties and that they function as adjuvants in concert with FDA-approved antibiotics against multi-drug resistant (MDR) bacteria. Studies described herein demonstrate that benzyl C 14 hydraphile (BC 14 H) shows high efficacy as an antimicrobial. BC 14 H, at sub-MIC concentrations, forms aggregates of ∼200 nm that interact with the surface of bacteria. Surface-active BC 14 H then localizes in the bacterial membranes, which increases their permeability. As a result, antibiotic influx into the bacterial cytosol increases in the presence of BC n Hs. Efflux pump inhibition and accumulation of substrate was also observed, likely due to disruption of the cation gradient. As a result, BC 14 H recovers the activity of norfloxacin by 128-fold against resistant Staphylococcus aureus . BC 14 H shows extremely low resistance development and is less cytotoxic than colistin. Overall, synthetic ionophores represent a new scaffold for developing efficient and non-resistant antimicrobial-adjuvants.« less
  5. Polymeric membranes for separation of pharmaceutical intermediates/products by organic solvent nanofiltration (OSN) have to be highly resistant to many organic solvents including high-boiling polar aprotic ones, e.g., N- methyl-2-pyrollidone (NMP), dimethylsulfoxide (DMSO), dimethylformamide (DMF). Unless cross-linked, few polymers resist swelling or dissolution in such solvents; however particular perfluoropolymers are resistant to almost all solvents except perfluorosolvents. One such polymer, designated AHP1, a glassy amorphous hydrophobic perfluorinated polymer, has been studied here. Additional perfluoropolymers studied here are hydrophilically modified (HMP2 and HMP3) versions to enhance the flux of polar aprotic solvents. OSN performances of three types of membranes including the hydrophilicallymore »modified ones were studied via solvent flux and solute rejection at pressures up to 5000 kPa. The solutes were four active pharmaceutical ingredients (APIs) or pharmaceutical intermediates having molecular weights (MWs) between 432 and 809 Da and three dyes, Oil Blue N (378 Da), Sudan Black B (456 Da), Brilliant Blue R (826 Da). Solvents used were: ethyl acetate, toluene, n- heptane, iso-octane, DMSO, tetrahydrofuran (THF), DMF, acetone, NMP, methanol. Test cells included stirred cells and tangential flow cells. Pure solvent fluxes through three membrane types were characterized using a particular parameter employing various solvent properties. All three membranes achieved high solute rejections around 91–98% at ambient temperatures. HMP2 membrane achieved 95% solute rejection for an API (809 Da) in DMSO at a high temperature, 75 ◦C. A two-stage simulated nanofiltration process achieved 99%+ rejection of a pharmaceutical intermediate (MW, 432 Da) in 75v% NMP-25v% ethyl acetate solution.« less