Stretchable electronics outperform existing rigid and bulky electronics and benefit a wide range of species, including humans, machines, and robots, whose activities are associated with large mechanical deformation and strain. Due to the nonstretchable nature of most electronic materials, in particular semiconductors, stretchable electronics are mostly realized through the strategies of architectural engineering to accommodate mechanical stretching rather than imposing strain into the materials directly. On the other hand, recent development of stretchable electronics by creating them entirely from stretchable elastomeric electronic materials, i.e., rubbery electronics, suggests a feasible a venue. Rubbery electronics have gained increasing interest due to the unique advantages that they and their associated manufacturing technologies have offered. This work reviews the recent progress in developing rubbery electronics, including the crucial stretchable elastomeric materials of rubbery conductors, rubbery semiconductors, and rubbery dielectrics. Thereafter, various rubbery electronics such as rubbery transistors, integrated electronics, rubbery optoelectronic devices, and rubbery sensors are discussed.
- Award ID(s):
- 1650536
- NSF-PAR ID:
- 10086105
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 5
- Issue:
- 2
- ISSN:
- 2375-2548
- Page Range / eLocation ID:
- eaav5749
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract The dissimilarity of material composition in existing stretchable electronics and biological organisms is a key bottleneck, still yet to be resolved, toward seamless integration between stretchable electronics and biological species. For instance, human or animal tissues and skins are fully made out of soft polymer species, while existing stretchable electronics are composed of rigid inorganic materials, either purely or partially. Soft stretchable electronics fully made out of polymeric materials with intrinsic softness and stretchability are sought after and therefore proposed to address this technical challenge. Here, rubbery electronics and sensors fully made out of stretchable polymeric materials including all‐polymer rubbery transistors, sensors, and sensory skin, which have similar material composition to biology, are reported. The fabricated all‐polymer rubbery transistors exhibit field‐effect mobility of 1.11 cm2V‐1s‐1and retain their transistor performance even under mechanical stretch of 30%. In addition, all‐polymer rubbery strain and temperature sensors are demonstrated with high gauge factor and good temperature sensing capability. Based on these all‐polymer rubbery electronics, an active‐matrix multiplexed sensory skin on a robotic hand is demonstrated to illustrate one of the applications.
-
Abstract For wearable and implantable electronics applications, developing intrinsically stretchable polymer semiconductor is advantageous, especially in the manufacturing of large‐area and high‐density devices. A major challenge is to simultaneously achieve good electrical and mechanical properties for these semiconductor devices. While crystalline domains are generally needed to achieve high mobility, amorphous domains are necessary to impart stretchability. Recent progresses in the design of high‐performance donor–acceptor polymers that exhibit low degrees of energetic disorder, while having a high fraction of amorphous domains, appear promising for polymer semiconductors. Here, a low crystalline, i.e., near‐amorphous, indacenodithiophene‐
co ‐benzothiadiazole (IDTBT) polymer and a semicrystalline thieno[3,2‐b ]thiophene‐diketopyrrolopyrrole (DPPTT) are compared, for mechanical properties and electrical performance under strain. It is observed that IDTBT is able to achieve both a high modulus and high fracture strain, and to preserve electrical functionality under high strain. Next, fully stretchable transistors are fabricated using the IDTBT polymer and observed mobility ≈0.6 cm2V−1s−1at 100% strain along stretching direction. In addition, the morphological evolution of the stretched IDTBT films is investigated by polarized UV–vis and grazing‐incidence X‐ray diffraction to elucidate the molecular origins of high ductility. In summary, the near‐amorphous IDTBT polymer signifies a promising direction regarding molecular design principles toward intrinsically stretchable high‐performance polymer semiconductor. -
Abstract Numerous strategies are developed to impart stretchability to polymer semiconductors. Although these methods improve the ductility, mobility, and stability of such stretchable semiconductors, they nonetheless still need further improvement. Here, it is shown that 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4‐TCNQ) is an effective molecular additive to tune the properties of a diketopyrrolopyrrole‐based (DPP‐based) semiconductor. Specifically, the addition of F4‐TCNQ is observed to improve the ductility of the semiconductor by altering the polymer’s microstructures and dynamic motions. As a p‐type dopant additive, F4‐TCNQ can also effectively enhance the mobility and stability of the semiconductor through changing the host polymer’s packing structures and charge trap passivation. Upon fabricating fully stretchable transistors with F4‐TCNQ‐DPP blended semiconductor films, it is observed that the resulting stretchable transistors possess one of the highest initial mobility of 1.03 cm2V−1s−1. The fabricated transistors also exhibit higher stability (both bias and environmental) and mobility retention under repeated strain, compared to those without F4‐TCNQ additive. These findings offer a new direction of research on stretchable semiconductors to facilitate future practical applications.
-
Abstract Understanding molecular design rules for stretchable polymer semiconductors is important for enabling next generation stretchable electronic circuits. To simultaneously improve both electrical properties and mechanical stretchability, a design strategy is reported in introducing conjugated rigid fused‐rings with bulky side groups in semiconducting polymers. In this work, the understanding of this design concept is improved by systematically investigating the effect of different types of bulky side groups asymmetrically substituted on conjugated polymer semiconductor backbones. Specifically, four types of side groups are investigated, including naphthalene (NaPh), biphenyl (PhPh), thienylphenyl (ThPh), and alkylphenyl (C4Ph), asymmetrically substituted on benzodithiophene units, namely asy‐BDT. With the four types of side groups installed on BDT‐containing conjugated polymers in an asymmetrical fashion, it is observed that they reduced the polymer chain aggregation and film crystallinity, hence improving the film stretchability. Furthermore, the fully conjugated polymer backbone allows maintenance of good charge carrier mobilities. Specifically, polymer PDPP‐C4Ph (with C4Ph side groups) shows the highest mobility in the fully stretchable transistor and maintained its mobility even after being subjected to hundreds of stretching‐releasing cycles at 25% strain. Overall, the results provide anunderstanding of the use of asymmetrically substituted fused‐ring conjugated polymer structures to tune mechanical and charge transport properties.