skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Strong Duality for a Multiple-Good Monopolist
We characterize optimal mechanisms for the multiple-good monopoly problem and provide a framework to find them. We show that a mechanism is optimal if and only if a measure μ derived from the buyer's type distribution satisfies certain stochastic dominance conditions. This measure expresses the marginal change in the seller's revenue under marginal changes in the rent paid to subsets of buyer types. As a corollary, we characterize the optimality of grand-bundling mechanisms, strengthening several results in the literature, where only sufficient optimality conditions have been derived. As an application, we show that the optimal mechanism for n independent uniform items each supported on [c,c+1] is a grand-bundling mechanism, as long as c is sufficiently large, extending Pavlov's result for 2 items [Pavlov'11]. At the same time, our characterization also implies that, for all c and for all sufficiently large n, the optimal mechanism for n independent uniform items supported on [c,c+1] is not a grand bundling mechanism.  more » « less
Award ID(s):
1650733
PAR ID:
10086245
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Econometrica
Volume:
85
Issue:
3
ISSN:
0012-9682
Page Range / eLocation ID:
735-767
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We revisit the well-studied problem of designing mechanisms for one-sided matching markets, where a set of n agents needs to be matched to a set of n heterogeneous items. Each agent i has a value vij for each item j, and these values are private information that the agents may misreport if doing so leads to a preferred outcome. Ensuring that the agents have no incentive to misreport requires a careful design of the matching mechanism, and mechanisms proposed in the literature mitigate this issue by eliciting only the ordinal preferences of the agents, i.e., their ranking of the items from most to least preferred. However, the efficiency guarantees of these mechanisms are based only on weak measures that are oblivious to the underlying values. In this paper we achieve stronger performance guarantees by introducing a mechanism that truthfully elicits the full cardinal preferences of the agents, i.e., all of the vij values. We evaluate the performance of this mechanism using the much more demanding Nash bargaining solution as a benchmark, and we prove that our mechanism significantly outperforms all ordinal mechanisms (even non-truthful ones). To prove our approximation bounds, we also study the population monotonicity of the Nash bargaining solution in the context of matching markets, providing both upper and lower bounds which are of independent interest. 
    more » « less
  2. In the unit-cost comparison model, a black box takes an input two items and outputs the result of the comparison. Problems like sorting and searching have been studied in this model, and it has been general- ized to include the concept of priced information, where different pairs of items (say database records) have different comparison costs. These comparison costs can be arbitrary (in which case no algorithm can be close to optimal (Charikar et al. STOC 2000)), structured (for exam- ple, the comparison cost may depend on the length of the databases (Gupta et al. FOCS 2001)), or stochastic (Angelov et al. LATIN 2008). Motivated by the database setting where the cost depends on the sizes of the items, we consider the problems of sorting and batched predecessor where two non-uniform sets of items A and B are given as input. (1) In the RAM setting, we consider the scenario where both sets have n keys each. The cost to compare two items in A is a, to compare an item of A to an item of B is b, and to compare two items in B is c. We give upper and lower bounds for the case a ≤ b ≤ c, the case that serves as a warmup for the generalization to the external-memory model. Notice that the case b = 1,a = c = ∞ is the famous “nuts and bolts” problem. ) In the Disk-Access Model (DAM), where transferring elements between disk and internal memory is the main bottleneck, we con- sider the scenario where elements in B are larger than elements in A. The larger items take more I/Os to be brought into memory, consume more space in internal memory, and are required in their entirety for comparisons. A key observation is that the complexity of sorting depends heavily on the interleaving of the small and large items in the final sorted order. If all large elements come after all small elements in the final sorted order, sorting each type separately and concatenating is optimal. However, if the set of predecessors of B in A has size k ≪ n, one must solve an associated batched predecessor problem in order to achieve optimality. We first give output-sensitive lower and upper bounds on the batched predecessor problem, and use these to derive bounds on the complexity of sorting in the two models. Our bounds are tight in most cases, and require novel generalizations of the classical lower bound techniques in external memory to accommodate the non-uniformity of keys. 
    more » « less
  3. Abstract We prove that among all 1-periodic configurations $$\Gamma $$ of points on the real line $$\mathbb{R}$$ the quantities $$\min _{x \in \mathbb{R}} \sum _{\gamma \in \Gamma } e^{- \pi \alpha (x - \gamma )^{2}}$$ and $$\max _{x \in \mathbb{R}} \sum _{\gamma \in \Gamma } e^{- \pi \alpha (x - \gamma )^{2}}$$ are maximized and minimized, respectively, if and only if the points are equispaced and whenever the number of points $$n$$ per period is sufficiently large (depending on $$\alpha $$). This solves the polarization problem for periodic configurations with a Gaussian weight on $$\mathbb{R}$$ for large $$n$$. The first result is shown using Fourier series. The second result follows from the work of Cohn and Kumar on universal optimality and holds for all $$n$$ (independent of $$\alpha $$). 
    more » « less
  4. Suppose that we have $$n$$ agents and $$n$$ items which lie in a shared metric space. We would like to match the agents to items such that the total distance from agents to their matched items is as small as possible. However, instead of having direct access to distances in the metric, we only have each agent's ranking of the items in order of distance. Given this limited information, what is the minimum possible worst-case approximation ratio (known as the \emph{distortion}) that a matching mechanism can guarantee? Previous work by \citet{CFRF+16} proved that the (deterministic) Serial Dictatorship mechanism has distortion at most $$2^n - 1$. We improve this by providing a simple deterministic mechanism that has distortion $O(n^2)$. We also provide the first nontrivial lower bound on this problem, showing that any matching mechanism (deterministic or randomized) must have worst-case distortion $$\Omega(\log n)$$. In addition to these new bounds, we show that a large class of truthful mechanisms derived from Deferred Acceptance all have worst-case distortion at least $2^n - 1$, and we find an intriguing connection between \emph{thin matchings} (analogous to the well-known thin trees conjecture) and the distortion gap between deterministic and randomized mechanisms. 
    more » « less
  5. We consider a revenue-maximizing seller with m heterogeneous items and a single buyer whose valuation for the items may exhibit both substitutes and complements. We show that the better of selling the items separately and bundling them together— guarantees a [Formula: see text]-fraction of the optimal revenue, where d is a measure of the degree of complementarity; it extends prior work showing that the same simple mechanism achieves a constant-factor approximation when buyer valuations are subadditive (the most general class of complement-free valuations). Our proof is enabled by a recent duality framework, which we use to obtain a bound on the optimal revenue in the generalized setting. Our technical contributions are domain specific to handle the intricacies of settings with complements. One key modeling contribution is a tractable notion of “degree of complementarity” that admits meaningful results and insights—we demonstrate that previous definitions fall short in this regard. 
    more » « less