skip to main content


Title: Role of the striatum in incidental learning of sound categories

Humans are born as “universal listeners” without a bias toward any particular language. However, over the first year of life, infants’ perception is shaped by learning native speech categories. Acoustically different sounds—such as the same word produced by different speakers—come to be treated as functionally equivalent. In natural environments, these categories often emerge incidentally without overt categorization or explicit feedback. However, the neural substrates of category learning have been investigated almost exclusively using overt categorization tasks with explicit feedback about categorization decisions. Here, we examined whether the striatum, previously implicated in category learning, contributes to incidental acquisition of sound categories. In the fMRI scanner, participants played a videogame in which sound category exemplars aligned with game actions and events, allowing sound categories to incidentally support successful game play. An experimental group heard nonspeech sound exemplars drawn from coherent category spaces, whereas a control group heard acoustically similar sounds drawn from a less structured space. Although the groups exhibited similar in-game performance, generalization of sound category learning and activation of the posterior striatum were significantly greater in the experimental than control group. Moreover, the experimental group showed brain–behavior relationships related to the generalization of all categories, while in the control group these relationships were restricted to the categories with structured sound distributions. Together, these results demonstrate that the striatum, through its interactions with the left superior temporal sulcus, contributes to incidental acquisition of sound category representations emerging from naturalistic learning environments.

 
more » « less
NSF-PAR ID:
10086261
Author(s) / Creator(s):
; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
116
Issue:
10
ISSN:
0027-8424
Page Range / eLocation ID:
p. 4671-4680
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Humans generate categories from complex regularities evolving across even imperfect sensory input. Here, we examined the possibility that incidental experiences can generate lasting category knowledge. Adults practiced a simple visuomotor task not dependent on acoustic input. Novel categories of acoustically complex sounds were not necessary for task success but aligned incidentally with distinct visuomotor responses in the task. Incidental sound category learning emerged robustly when within-category sound exemplar variability was closely yoked to visuomotor task demands and was not apparent in the initial session when this coupling was less robust. Nonetheless, incidentally acquired sound category knowledge was evident in both cases one day later, indicative of offline learning gains and, nine days later, learning in both cases supported explicit category labeling of novel sounds. Thus, a relatively brief incidental experience with multi-dimensional sound patterns aligned with behaviorally relevant actions and events can generate new sound categories, immediately after the learning experience or a day later. These categories undergo consolidation into long-term memory to support robust generalization of learning, rather than simply reflecting recall of specific sound-pattern exemplars previously encountered. Humans thus forage for information to acquire and consolidate new knowledge that may incidentally support behavior, even when learning is not strictly necessary for performance. 
    more » « less
  2. null (Ed.)
    Category learning is fundamental to cognition, but little is known about how it proceeds in real-world environments when learners do not have instructions to search for category-relevant information, do not make overt category decisions, and do not experience direct feedback. Prior research demonstrates that listeners can acquire task-irrelevant auditory categories incidentally as they engage in primarily visuomotor tasks. The current study examines the factors that support this incidental category learning. Three experiments systematically manipulated the relationship of four novel auditory categories with a consistent visual feature (color or location) that informed a simple behavioral keypress response regarding the visual feature. In both an in-person experiment and two online replications with extensions, incidental auditory category learning occurred reliably when category exemplars consistently aligned with visuomotor demands of the primary task, but not when they were misaligned. The presence of an additional irrelevant visual feature that was uncorrelated with the primary task demands neither enhanced nor harmed incidental learning. By contrast, incidental learning did not occur when auditory categories were aligned consistently with one visual feature, but the motor response in the primary task was aligned with another, category-unaligned visual feature. Moreover, category learning did not reliably occur across passive observation or when participants made a category-nonspecific, generic motor response. These findings show that incidental learning of categories is strongly mediated by the character of coincident behavior. 
    more » « less
  3. The extent that articulatory information embedded in incoming speech contributes to the formation of new perceptual categories for speech sounds has been a matter of discourse for decades. It has been theorized that the acquisition of new speech sound categories requires a network of sensory and speech motor cortical areas (the “dorsal stream”) to successfully integrate auditory and articulatory information. However, it is possible that these brain regions are not sensitive specifically to articulatory information, but instead are sensitive to the abstract phonological categories being learned. We tested this hypothesis by training participants over the course of several days on an articulable non-native speech contrast and acoustically matched inarticulable nonspeech analogues. After reaching comparable levels of proficiency with the two sets of stimuli, activation was measured in fMRI as participants passively listened to both sound types. Decoding of category membership for the articulable speech contrast alone revealed a series of left and right hemisphere regions outside of the dorsal stream that have previously been implicated in the emergence of non-native speech sound categories, while no regions could successfully decode the inarticulable nonspeech contrast. Although activation patterns in the left inferior frontal gyrus (IFG), the middle temporal gyrus (MTG), and the supplementary motor area (SMA) provided better information for decoding articulable (speech) sounds compared to the inarticulable (sine wave) sounds, the finding that dorsal stream regions do not emerge as good decoders of the articulable contrast alone suggests that other factors, including the strength and structure of the emerging speech categories are more likely drivers of dorsal stream activation for novel sound learning. 
    more » « less
  4. Categorization has a deep impact on behavior, but whether category learning is served by a single system or multiple systems remains debated. Here, we designed two well-equated nonspeech auditory category learning challenges to draw on putative procedural (information-integration) versus declarative (rule-based) learning systems among adult Hebrew-speaking control participants and individuals with dyslexia, a language disorder that has been linked to a selective disruption in the procedural memory system and in which phonological deficits are ubiquitous. We observed impaired information-integration category learning and spared rule-based category learning in the dyslexia group compared with the neurotypical group. Quantitative model-based analyses revealed reduced use of, and slower shifting to, optimal procedural-based strategies in dyslexia with hypothesis-testing strategy use on par with control participants. The dissociation is consistent with multiple category learning systems and points to the possibility that procedural learning inefficiencies across categories defined by complex, multidimensional exemplars may result in difficulty in phonetic category acquisition in dyslexia. 
    more » « less
  5. Infants learn the sound categories of their language and adults successfully process the sounds they hear, even though sound categories often overlap in their acoustics. Most researchers agree that listeners use context to disambiguate overlapping categories. However, they differ in their ideas about how context is used. One idea is that listeners normalize out the systematic effects of context from the acoustics of a sound. Another idea is that contextual information may itself be an informative cue to category membership, due to patterns in the types of contexts that particular sounds occur in. We directly contrast these two ways of using context by applying each one to the test case of Japanese vowel length. We find that normalizing out contextual variability from the acoustics does not improve categorization, but using context in a top-down fashion does so substantially. This reveals a limitation of normalization in phonetic acquisition and processing and suggests that approaches that make use of top-down contextual information are promising to pursue. 
    more » « less