skip to main content

Title: Consistent shifts in pollinator-relevant floral coloration along Rocky Mountain elevation gradients
Abstract1. Floral colour is a fundamental signal that shapes plant–pollinator interactions. Despite theoretical reasons why floral colours might shift in representation along biotic and abiotic gradients, few studies have examined community-level shifts in colour, and even fewer significant patterns have been detected.2. We examined floral colour on six replicated transects spanning 1,300 m in the Rocky Mountains of Colorado, USA. Along these transects, there is a hypothe-sized shift from bee-dominated to fly-dominated pollination with increasing eleva-tion. The reflectance of flowers of 110 forb and shrub species was measured using a spectrophotometer, and was used to estimate three components of colour (hue, saturation and brightness) in relevant pollinator visual spaces. Percent cover data were collected from 67 sites and used to obtain community-weighted mean (cwm) estimates of floral colour.3. We found strong patterns of elevational change in floral colour. Reflectancecwm of shorter wavelengths (UVB through human blue, 300–500 nm) generally de-creased linearly with elevation, while reflectancecwm of longer wavelengths (human green through red, 500–700 nm) showed hump-shaped patterns with highest reflectance at intermediate elevations. With respect to pollinators, satura-tioncwm increased significantly with elevation in both bee and fly visual spaces, while brightness contrastcwm showed a hump-shaped pattern in bee space and more » a decline with elevation in fly visual space. For hue, cover of species perceived as bee-blue declined with elevation, while cover of bee-UV-green species showed a hump-shaped pattern. In comparison, we detected no elevational shifts in floral hues as perceived by flies.4. Synthesis. Hue patterns are consistent with the hypothesis that bee pollinators have shaped the geography of floral colour. The roles of fly pollinators and of abi-otic drivers are more difficult to infer, although the drop in floral brightness at high elevations is consistent with predictions that low temperatures and more intense ultraviolet radiation should favour increased pigment concentrations there. Our results indicate that floral colour can be dynamic yet predictable across the land-scape, a pattern that provides opportunities to tease apart the ecological and evo-lutionary drivers of this important plant trait. « less
Authors:
Award ID(s):
1755522 1262713
Publication Date:
NSF-PAR ID:
10086348
Journal Name:
Journal of ecology
Volume:
106
Page Range or eLocation-ID:
1910-1924
ISSN:
0022-0477
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Hummingbirds, a highly diverse avian family, are specialized vertebrate pollinators that feed upon carbohydrate-rich nectar to fuel their fast metabolism while consuming invertebrates to obtain protein. Previous work has found that morphologically diverse hummingbird communities exhibit higher diet specialization on floral resources than morphologically similar hummingbird communities. Due to the difficulties of studying avian diets, we have little understanding whether hummingbirds show similar patterns with their invertebrate prey. Here, we use DNA metabarcoding to analyze floral and invertebrate diets of 3 species of sympatric North American hummingbirds. We collected fecal samples from 89 Anna’s (Calypte anna), 39 Black-chinned (Archilochus alexandri), and 29 Calliope (Selasphorus calliope) hummingbirds in urban and rural localities as well as across an elevational gradient from sea level to 2,500 meters above sea level in California, USA. We found hummingbirds showed high dietary overlap in both invertebrate and plant resources, with few invertebrate and plant families common to most individuals and many families found in only a few individuals. Chironomidae was the most common invertebrate family across all species, and Rosaceae and Orobanchaceae were the most common plant families. Anna’s Hummingbirds had significantly higher invertebrate diet diversity than Black-chinned Hummingbirds when found at the same sites,more »but we found no difference in plant diet diversity among any of the 3 species. Hummingbirds in urban sites had higher plant diet diversity than in rural sites, but we found no effect of elevation on dietary richness. Our study shows how DNA metabarcoding can be used to non-invasively investigate previously unknown life-histories of well-studied birds, lending insight to community structure, function, and evolution.

    « less
  2. Abstract Learning plays an important role in the location and utilization of nectar sources for pollinators. In this work we focus on the plant-pollinator interaction between the butterfly Agraulis vanillae (Nymphalidae) and two Glandularia plant species (Verbenaceae) that grow in sympatry. Bioassays using arrays of artificial flowers (red vs. lilac-purple) showed that naïve A. vanillae butterflies do not have innate colour preferences for any of the tested colours. Trained butterflies were able to learn to associate both floral colours with the presence of nectar rewards. Wild A. vanillae butterflies visited the red flowers of Glandularia peruviana much more frequently than the lilac-purple flowers of Glandularia venturii. Standing nectar crop measurements showed that G. peruviana flowers offered three times more sucrose than the flowers of G. venturii. Analyses confirmed that corolla colour of G. peruviana (red flowers) and G. venturii (lilac-purple flowers) were discriminable in the butterfly’s colour space. These findings may indicate flexibility in A. vanillae preferences due to a learned association between red coloration and higher nectar rewards.
  3. Abstract Understanding how biotic and abiotic interactions influence community assembly and composition is a fundamental goal in community ecology. Addressing this issue is particularly tractable along elevational gradients in tropical mountains that feature substantial abiotic gradients and rates of species turnover. We examined elevational patterns of avian community structure on 2 mountains in Malaysian Borneo to assess changes in the relative strength of biotic interactions and abiotic constraints. In particular, we used metrics based on (1) phylogenetic relatedness and (2) functional traits associated with both resource acquisition and tolerance of abiotic challenges to identify patterns and causes of elevational differences in community structure. High elevation communities were composed of more phylogenetically and functionally similar species than would be expected by chance. Resource acquisition traits, in particular, were clustered at high elevations, suggesting low resource and habitat diversity were important drivers of those communities. Traits typically associated with tolerance of cold temperatures and low atmospheric pressure showed no elevational patterns. All traits were neutral or overdispersed at low elevations suggesting an absence of strong abiotic filters or an increased influence of interspecific competition. However, relative bill size, which is important for thermoregulation, was larger in low elevation communities, suggesting abiotic factorsmore »were also influential there. Regardless of metric, clustered and neutral communities were more frequent than overdispersed communities overall, implying that interspecific competition among close relatives may not be a pervasive driver of elevational distribution and community structure of tropical birds. Overall, our analyses reveal that a diverse set of predominantly biotic factors underlie elevational variation in community structure on tropical mountains.« less
  4. Pathogens pose significant threats to pollinator health and food security. Pollinators can transmit diseases during foraging, but the consequences of plant species composition for infection is unknown. In agroecosystems, flowering strips or hedgerows are often used to augment pollinator habitat. We used canola as a focal crop in tents and manipulated flowering strip composition using plant species we had previously shown to result in higher or lower bee infection in short-term trials. We also manipulated initial colony infection to assess impacts on foraging behavior. Flowering strips using high-infection plant species nearly doubled bumble bee colony infection intensity compared to low-infection plant species, with intermediate infection in canola-only tents. Both infection treatment and flowering strips reduced visits to canola, but we saw no evidence that infection treatment shifted foraging preferences. Although high-infection flowering strips increased colony infection intensity, colony reproduction was improved with any flowering strips compared to canola alone. Effects of flowering strips on colony reproduction were explained by nectar availability, but effects of flowering strips on infection intensity were not. Thus, flowering strips benefited colony reproduction by adding floral resources, but certain plant species also come with a risk of increased pathogen infection intensity.

  5. Hines, Heather (Ed.)
    Abstract Biogeographic clines in morphology along environmental gradients can illuminate forces influencing trait evolution within and between species. Latitude has long been studied as a driver of morphological clines, with a focus on body size and temperature. However, counteracting environmental pressures may impose constraints on body size. In montane landscapes, declines in air density with elevation can negatively impact flight performance in volant species, which may contribute to selection for reduced body mass despite declining temperatures. We examine morphology in two bumble bee (Hymenoptera: Apidae: Bombus Latreille) species, Bombus vancouverensis Cresson and Bombus vosnesenskii Radoszkowski, across mountainous regions of California, Oregon, and Washington, United States. We incorporate population genomic data to investigate the relationship between genomic ancestry and morphological divergence. We find that B. vancouverensis, which tends to be more specialized for high elevations, exhibits stronger spatial-environmental variation, being smaller in the southern and higher elevation parts of its range and having reduced wing loading (mass relative to wing area) at high elevations. Bombus vosnesenskii, which is more of an elevational generalist, has substantial trait variation, but spatial-environmental correlations are weak. Population structure is stronger in the smaller B. vancouverensis, and we find a significant association between elevation and wingmore »loading after accounting for genetic structure, suggesting the possibility of local adaptation for this flight performance trait. Our findings suggest that some conflicting results for body size trends may stem from distinct environmental pressures that impact different aspects of bumble bee ecology, and that different species show different morphological clines in the same region.« less