skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 12 until 2:00 AM ET on Friday, June 13 due to maintenance. We apologize for the inconvenience.


Title: The finale of a trilogy: comparing terpolymers and ternary blends with structurally similar backbones for use in organic bulk heterojunction solar cells
Building on our previous works that compared the efficacy of terpolymers vs. ternary blends in improving the performance of bulk heterojunction organic solar cells, the final piece of this series of studies focuses on comparing terpolymer and ternary blends constructed with two polymers with structurally similar backbones (monoCNTAZ and FTAZ) yet markedly different open circuit voltage ( V oc ) values. Terpolymers and ternary blends of five different ratios were studied and the results demonstrate that while the overall performance of both the systems is similar, the ternary blends exhibit higher short circuit current ( J sc ) values, while the terpolymers exhibit higher V oc values. Investigation of the charge transfer state using low-energy external quantum efficiency (EQE) indicates that the ternary blends are governed by a parallel-like mechanism, while the terpolymer does not follow this mechanism. The key morphological difference between the systems, as elucidated by resonance soft X-ray scattering (RSoXS), is the slightly smaller size (∼60 nm) of domains in the ternary blends compared to that of the terpolymer (∼80 nm), which may affect exciton harvesting in the terpolymer system and lead to lower J sc values. In addition, a lower driving force for the formation of charge transfer (CT) state is also likely to contribute to the lower J sc values in the terpolymer system. All together, the data show that structurally similar (perhaps even miscible) polymers still exhibit key differences in performance when paired in terpolymers vs. ternary blends and allow us to further illuminate the underlying mechanisms of such complex systems.  more » « less
Award ID(s):
1639429
PAR ID:
10086544
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry A
Volume:
6
Issue:
39
ISSN:
2050-7488
Page Range / eLocation ID:
19190 to 19200
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Placing plasmonic nanoparticles (NPs) in close proximity to semiconductor nanostructures renders effective tuning of the optoelectronic properties of semiconductors through the localized surface plasmon resonance (LSPR)-induced enhancement of light absorption and/or promotion of carrier transport. Herein, we report on, for the first time, the scrutiny of carrier dynamics of perovskite solar cells (PSCs) via sandwiching monodisperse plasmonic/dielectric core/shell NPs with systematically varied dielectric shell thickness yet fixed plasmonic core diameter within an electron transport layer (ETL). Specifically, a set of Au NPs with precisely controlled dimensions ( i.e. , fixed Au core diameter and tunable SiO 2 shell thickness) and architectures (plain Au NPs and plasmonic/dielectric Au/SiO 2 core/shell NPs) are first crafted by capitalizing on the star-like block copolymer nanoreactor strategy. Subsequently, these monodisperse NPs are sandwiched between the two consecutive TiO 2 ETLs. Intriguingly, there exists a critical dielectric SiO 2 shell thickness, below which hot electrons from the Au core are readily injected to TiO 2 ( i.e. , hot electron transfer (HET)); this promotes local electron mobility in the TiO 2 ETL, leading to improved charge transport and increased short-circuit current density ( J sc ). It is also notable that the HET effect moves up the Fermi level of TiO 2 , resulting in an enhanced built-in potential and open-circuit voltage ( V oc ). Taken together, the PSCs constructed by employing a sandwich-like TiO 2 /Au NPs/TiO 2 ETL exhibit both greatly enhanced J sc and V oc , delivering champion PCEs of 18.81% and 19.42% in planar and mesostructured PSCs, respectively. As such, the judicious positioning of rationally designed monodisperse plasmonic NPs in the ETL affords effective tailoring of carrier dynamics, thereby providing a unique platform for developing high-performance PSCs. 
    more » « less
  2. Donor polymer fluorination has proven to be an effective method to improve the power conversion efficiency of fullerene-based polymer solar cells (PSCs). However, this fluorine effect has not been well-studied in systems containing new, non-fullerene acceptors (NFAs). Here, we investigate the impact of donor polymer fluorination in NFA-based solar cells by fabricating devices with either a fluorinated conjugated polymer (FTAZ) or its non-fluorinated counterpart (HTAZ) as the donor polymer and a small molecule NFA (ITIC) as the acceptor. We found that, similar to fullerene-based devices, fluorination leads to an increased open circuit voltage ( V oc ) from the lowered HOMO level and improved fill factor (FF) from the higher charge carrier mobility. More importantly, donor polymer fluorination in this NFA-based system also led to a large increase in short circuit current ( J sc ), which stems from the improved charge transport and extraction in the fluorinated device. This study demonstrates that fluorination is also advantageous in NFA-based PSCs and may improve performance to a higher extent than in fullerene-based PSCs. In the context of other recent reports on demonstrating higher photovoltaic device efficiencies with fluorinated materials, fluorination appears to be a valuable strategy in the design and synthesis of future donors and acceptors for PSCs. 
    more » « less
  3. Bulk heterojunction polymer solar cells based on a novel combination of materials are fabricated using industry‐compliant conditions for large area manufacturing. The relatively low‐cost polymer PTQ10 is paired with the nonfullerene acceptor 4TIC‐4F. Devices are processed using a nonhalogenated solvent to comply with industrial usage in absence of any thermal treatment to minimize the energy footprint of the fabrication. No solvent additive is used. Adding the well‐known and low‐cost fullerene derivative PC61BM acceptor to this binary blend to form a ternary blend, the power conversion efficiency (PCE) is improved from 8.4% to 9.9% due to increased fill factor (FF) and open‐circuit voltage (VOC) while simultaneously improving the stability. The introduction of PC61BM is able to balance the hole–electron mobility in the ternary blends, which is favourable for high FF. This charge transport behavior is correlated with the bulk heterojunction (BHJ) morphology deduced from grazing‐incidence wide‐angle X‐ray scattering (GIWAXS), atomic force microscopy (AFM), and surface energy analysis. In addition, the industrial figure of merit (i‐FOM) of this ternary blend is found to increase drastically upon addition of PC61BM due to an increased performance–stability–cost balance. 
    more » « less
  4. The use of tailored synthetic hydrogels for in vitro tissue culture and biomanufacturing provides the advantage of mimicking the cell microenvironment without issues of batch-to-batch variability. To that end, this work focused on the design, characterization, and preliminary evaluation of thermo-responsive, transparent synthetic terpolymers based on N-isopropylacrylamide, vinylphenylboronic acid, and polyethylene glycol for cell manufacturing and in vitro culture applications. Polymer physical properties were characterized by FT-IR, 1H-NMR, DLS, rheology, and thermal-gravimetric analysis. Tested combinations provided polymers with a lower critical solution temperature (LCST) between 30 and 45 °C. Terpolymer elastic/shear modulus varied between 0.3 and 19.1 kPa at 37 °C. Cellular characterization indicated low cell cytotoxicity on NIH-3T3. Experiments with the ovarian cancer model SKOV-3 and Jurkat T cells showed the terpolymers’ capacity for cell encapsulation without interfering with staining or imaging protocols. In addition, cell growth and high levels of pluripotency demonstrated the capability of terpolymer to culture iPSCs. Characterization results confirmed a promising use of terpolymers as a tunable scaffold for cell culture applications. 
    more » « less
  5. Abstract Two-dimensional (2D) ternary materials recently generated interest in optoelectronics and energy-related applications, alongside their binary counterparts. To date, only a few naturally occurring layered 2D ternary materials have been explored. The plethora of benefits owed to reduced dimensionality prompted exploration of expanding non-layered ternary chalcogenides into the 2D realm. This work presents a templating method that uses 2D transition metal dichalcogenides as initiators to be converted into the corresponding ternary chalcogenide upon addition of copper, via a solution-phase synthesis, conducted in high boiling point solvents. The process starts with preparation of VSe2nanosheets, which are next converted into Cu3VSe4sulvanite nanosheets (NSs) which retain the 2D geometry while presenting an X-ray diffraction pattern identical with the one for the bulk Cu3VSe4. Both the scanning electron microscopy and transmission microscopy electron microscopy show the presence of quasi-2D morphology. Recent studies of the sulfur-containing sulvanite Cu3VS4highlight the presence of an intermediate bandgap, associated with enhanced photovoltaic (PV) performance. The Cu3VSe4nanosheets reported herein exhibit multiple UV–Vis absorption peaks, related to the intermediate bandgaps similar to Cu3VS4and Cu3VSe4nanocrystals. To test the potential of Cu3VSe4NSs as an absorber for solar photovoltaic devices, Cu3VSe4NSs thin-films deposited on FTO were subjected to photoelectrochemical testing, showing p-type behavior and stable photocurrents of up to ~ 0.036 mA/cm2. The photocurrent shows a ninefold increase in comparison to reported performance of Cu3VSe4nanocrystals. This proves that quasi-2D sulvanite nanosheets are amenable to thin-film deposition and could show superior PV performance in comparison to nanocrystal thin-films. The obtained electrical impedance spectroscopy signal of the Cu3VSeNSs-FTO based electrochemical cell fits an equivalent circuit with the circuit elements of solution resistance (Rs), charge-transfer resistance (Rct), double-layer capacitance (Cdl), and Warburg impedance (W). The estimated charge transfer resistance value of 300 Ω cm2obtained from the Nyquist plot provides an insight into the rate of charge transfer on the electrode/electrolyte interface. 
    more » « less