skip to main content


Title: Cascade synthesis and optoelectronic applications of intermediate bandgap Cu3VSe4 nanosheets
Abstract

Two-dimensional (2D) ternary materials recently generated interest in optoelectronics and energy-related applications, alongside their binary counterparts. To date, only a few naturally occurring layered 2D ternary materials have been explored. The plethora of benefits owed to reduced dimensionality prompted exploration of expanding non-layered ternary chalcogenides into the 2D realm. This work presents a templating method that uses 2D transition metal dichalcogenides as initiators to be converted into the corresponding ternary chalcogenide upon addition of copper, via a solution-phase synthesis, conducted in high boiling point solvents. The process starts with preparation of VSe2nanosheets, which are next converted into Cu3VSe4sulvanite nanosheets (NSs) which retain the 2D geometry while presenting an X-ray diffraction pattern identical with the one for the bulk Cu3VSe4. Both the scanning electron microscopy and transmission microscopy electron microscopy show the presence of quasi-2D morphology. Recent studies of the sulfur-containing sulvanite Cu3VS4highlight the presence of an intermediate bandgap, associated with enhanced photovoltaic (PV) performance. The Cu3VSe4nanosheets reported herein exhibit multiple UV–Vis absorption peaks, related to the intermediate bandgaps similar to Cu3VS4and Cu3VSe4nanocrystals. To test the potential of Cu3VSe4NSs as an absorber for solar photovoltaic devices, Cu3VSe4NSs thin-films deposited on FTO were subjected to photoelectrochemical testing, showing p-type behavior and stable photocurrents of up to ~ 0.036 mA/cm2. The photocurrent shows a ninefold increase in comparison to reported performance of Cu3VSe4nanocrystals. This proves that quasi-2D sulvanite nanosheets are amenable to thin-film deposition and could show superior PV performance in comparison to nanocrystal thin-films. The obtained electrical impedance spectroscopy signal of the Cu3VSeNSs-FTO based electrochemical cell fits an equivalent circuit with the circuit elements of solution resistance (Rs), charge-transfer resistance (Rct), double-layer capacitance (Cdl), and Warburg impedance (W). The estimated charge transfer resistance value of 300 Ω cm2obtained from the Nyquist plot provides an insight into the rate of charge transfer on the electrode/electrolyte interface.

 
more » « less
Award ID(s):
1924412
NSF-PAR ID:
10205232
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
10
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Quasi‐2D Ruddlesden–Popper halide perovskites with a large exciton binding energy, self‐assembled quantum wells, and high quantum yield draw attention for optoelectronic device applications. Thin films of these quasi‐2D perovskites consist of a mixture of domains having different dimensionality, allowing energy funneling from lower‐dimensional nanosheets (high‐bandgap domains) to 3D nanocrystals (low‐bandgap domains). High‐quality quasi‐2D perovskite (PEA)2(FA)3Pb4Br13films are fabricated by solution engineering. Grazing‐incidence wide‐angle X‐ray scattering measurements are conducted to study the crystal orientation, and transient absorption spectroscopy measurements are conducted to study the charge‐carrier dynamics. These data show that highly oriented 2D crystal films have a faster energy transfer from the high‐bandgap domains to the low‐bandgap domains (<0.5 ps) compared to the randomly oriented films. High‐performance light‐emitting diodes can be realized with these highly oriented 2D films. Finally, amplified spontaneous emission with a low threshold 4.16 µJ cm−2is achieved and distributed feedback lasers are also demonstrated. These results show that it is important to control the morphology of the quasi‐2D films to achieve efficient energy transfer, which is a critical requirement for light‐emitting devices.

     
    more » « less
  2. Cadmium telluride (CdTe) solar cells are a promising photovoltaic (PV) technology for producing power in space owing to their high-efficiency (> 22.1 %), potential for specific power, and cost-effective manufacturing processes. In contrast to traditional space PVs, the high-Z (atomic number) CdTe absorbers can be intrinsically robust under extreme space radiation, offering long-term stability. Despite these advantages, the performance assessment of CdTe solar cells under high-energy particle irradiation (e.g., photons, neutrons, charged particles) is limited in the literature, and their stability is not comprehensively studied. In this work, we present the PV response of n-CdS / p-CdTe PVs under accelerated neutron irradiation. We measure PV properties of the devices at different neutron/photon doses. The equivalent dose deposited in the CdTe samples is simulated with deterministic and Monte Carlo radiation transport methods. Thin-film CdTe solar cells were synthesized on a fluorine-doped tin oxide (FTO) coated glass substrate (≈ 4 cm × 4 cm). CdS:O (≈ 100 nm) was reactively RF sputtered in an oxygen/argon ambient followed by a close-spaced sublimation deposition of CdTe (≈ 3.5 μm) in an oxygen/helium ambient. The sample was exposed to a 10 min vapor CdCl2 in oxygen/helium ambient at 430˚C. The samples were exposed to a wet CuCl2 solution prior to anneal 200ºC. A gold back-contact was formed on CdTe via thermal evaporation. The final sample contains 16 CdTe devices. For neutron irradiation, we cleaved the CdTe substrate into four samples and exposed two samples to ≈ 90 kW reactor power neutron radiation for 5.5 hours and 8.2 hours, respectively, in our TRIGA (Training, Research, Isotopes, General Atomics) reactor. We observed a noticeable color change of the glass substrates to brown after the neutron/gamma reactor exposure. Presumably, the injected high-energy neutrons caused the breaking of chemical bonds and the displacement of atoms in the glass substrates, creating point defects and color centers. The I-V characteristics showed noticeable deterioration with over 8 hour radiations. Specifically, the saturation current of the control devices was ≈ 25 nA increasing to 1 μA and 10 μA for the 5.5-hour and 8.2-hour radiated samples, respectively. The turn-on voltage of the control devices (≈ 0.85 V) decreased with the irradiated sample (≈ 0.75 V for 5.5-hour and ≈ 0.5 V for 8.2-hour exposures), implying noticeable radiation damage occurred at the heterojunction. The higher values of the ideality factor for irradiated devices (n > 2.2) compared to that of the control devices (n ≈ 1.3) also support the deterioration of the p-n junction. We observed the notable decrease in shunt resistance (RSH) and the increase in series resistance (Rs) with the neutron dose. It is possible that Cu ions introduced during the CuCl2 treatment may migrate into CdTe grain boundaries (GBs). The presence of Cu ions at GBs can create additional leakage paths for photocarrier transport, deteriorating the overall PV performance. We estimated the radiation dose of CdTe in comparison to Si (conventional PV) using a UUTR model (e.g., MCNP6 2D UTR Reactor simulations). In this model, we simulated Si and CdTe at the center point of the triangular fuel lattice and used an “unperturbed flux” tally in the water. Our simulations yielded a dose rate of 6916 Gy/s of neutrons and 16 Gy/s of photons for CdTe, and 1 Gy/s of neutrons and 21 Gy/s of photons for Si (doses +/- <1%). The large dose rate of neutrons in CdTe is mainly attributed to the large thermal neutron absorption cross-section of 113Cd. Based on this estimation, we calculate that the exposure of our CdTe PVs is equivalent to several million years in LEO (Low-Earth Orbit), or about 10,000 years for Si in LEO. Currently, we are working on a low-dose neutron/photon radiation on CdTe PVs and their light I-Vs and microstructural characterizations to gain better understanding on the degradation of CdTe PVs. 
    more » « less
  3. In recent years, Cu2ZnSn(S,Se)4(CZTSSe) materials have enabled important progress in associated thin‐film photovoltaic (PV) technology, while avoiding scarce and/or toxic metals; however, cationic disorder and associated band tailing fundamentally limit device performance. Cu2BaSnS4(CBTS) has recently been proposed as a prospective alternative large bandgap (~2 eV), environmentally friendly PV material, with ~2% power conversion efficiency (PCE) already demonstrated in corresponding devices. In this study, a two‐step process (i.e., precursor sputter deposition followed by successive sulfurization/selenization) yields high‐quality nominally pinhole‐free films with large (>1 µm) grains of selenium‐incorporated (x= 3) Cu2BaSnS4−xSex(CBTSSe) for high‐efficiency PV devices. By incorporating Se in the sulfide film, absorber layers with 1.55 eV bandgap, ideal for single‐junction PV, have been achieved within the CBTSSe trigonal structural family. The abrupt transition in quantum efficiency data for wavelengths above the absorption edge, coupled with a strong sharp photoluminescence feature, confirms the relative absence of band tailing in CBTSSe compared to CZTSSe. For the first time, by combining bandgap tuning with an air‐annealing step, a CBTSSe‐based PV device with 5.2% PCE (total area 0.425 cm2) is reported, >2.5× better than the previous champion pure sulfide device. These results suggest substantial promise for the emerging Se‐rich Cu2BaSnS4–xSexfamily for high‐efficiency and earth‐abundant PV.

     
    more » « less
  4. The ternary chalcogenide Cu3VSe4 (CVSe) with sulvanite structure has been theoretically predicted to be a promising candidate for photovoltaic applications due to its suitable band-gap for solar absorption and the relatively earth-abundant elements in its composition. To realize the absorber layer via an inexpensive route, printed thin-films could be fabricated from dispersions of nano-sized Cu3VSe4 precursors. Herein, cubic Cu3VSe4 nanocrystals were successfully synthesized via a hot-injection method. Similar with reported Cu3VS4 nanocrystals, Cu3VSe4 nanocrystals with cubic structure exhibit three absorption bands in the UV-Visible range indicative of a potential intermediate bandgap existence. A thin film fabricated by depositing the nanoparticles Cu3VSe4 on FTO coated glass substrate, exhibited a p-type behavior and a photocurrent of ~ 4 μA/cm2 when measured in an electrochemical cell setting. This first demonstration of photocurrent exhibited by a CVSe nanocrystals thin film signifies a promising potential in photovoltaic applications. 
    more » « less
  5. Abstract

    Quasi‐2D hybrid halide perovskites have drawn considerable attention due to their improved stability and facile tunability compared to 3D perovskites. The expansiveness of possibilities has thus far been limited by the difficulty in incorporating large ligands into thin‐film devices. Here, a bulky bi‐thiophene 2T ligand is focused on to develop a solvent system around creating strongly vertically‐aligned (2T)2(MA)6Pb7I22(n = 7) quasi‐2D perovskite films. By starting with a poorly coordinating solvent (gamma‐butyrolactone) and adding a small amount of dimethylsulfoxide and methanol, it is found that vertical orientation andz‐uniformity is greatly improved. These are carefully examined and verified using grazing‐incidence wide‐angle X‐ray scattering analysis and advanced optical characterizations. These films are incorporated into champion solar cells that achieve a power conversion efficiency of 13.3%, with a short‐circuit current density of 18.9 mA cm‐2, an open‐circuit voltage of 0.96 V, and a fill factor of 73.8%. Furthermore, the quasi‐2D absorbing layers show excellent stability in moisture, remaining unchanged after hundreds of hours. In addition, 2T is compared with the more common ligands butylammonium and phenylethylammonium in this solvent system to develop heuristics and deeper understanding of how to incorporate large ligands into stable photovoltaic devices.

     
    more » « less