skip to main content


Title: Enhancing the performance of the electron acceptor ITIC-Th via tailoring its end groups
We choose the high-performance nonfullerene acceptor ITIC-Th as an example, and incorporate electron-donating methoxy and electron-withdrawing F groups onto the terminal group 1,1-dicyanomethylene-3-indanone (IC) to construct a small library of four fused-ring electron acceptors. With this series, we systematically investigate the effects of the substituents on the end-groups on the electronic properties, charge transport, film morphology, and photovoltaic properties of the ITIC-Th series. The electron-withdrawing ability increases from methoxylated to unsubstituted, fluorinated, and difluorinated IC, leading to a downshift of energy levels and a redshift of absorption spectra. Optimized organic solar cells based on the ITIC-Th series show power conversion efficiencies ranging from 8.88% to 12.1%.  more » « less
Award ID(s):
1639429
NSF-PAR ID:
10086547
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Materials Chemistry Frontiers
Volume:
2
Issue:
3
ISSN:
2052-1537
Page Range / eLocation ID:
537 to 543
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Electron-deficient π-conjugated functional dyes lie at the heart of organic optoelectronics. Adding nitro groups to aromatic compounds usually quenches their fluorescence via inter-system crossing (ISC) or internal conversion (IC). While strong electronic coupling of the nitro groups with the dyes ensures the benefits from these electron-withdrawing substituents, it also leads to fluorescence quenching. Here, we demonstrate how such electronic coupling affects the photophysics of acceptor–donor–acceptor fluorescent dyes, with nitrophenyl acceptors and a pyrrolo[3,2-b]pyrrole donor. The position of the nitro groups and the donor-acceptor distance strongly affect the fluorescence properties of thebis-nitrotetraphenylpyrrolopyrroles. Concurrently, increasing solvent polarity quenches the emission that recovers upon solidifying the media. Intramolecular charge transfer (CT) and molecular dynamics, therefore, govern the fluorescence of these nitro-aromatics. While balanced donor-acceptor coupling ensures fast radiative deactivation and slow ISC essential for large fluorescence quantum yields, vibronic borrowing accounts for medium dependent IC via back CT. These mechanistic paradigms set important design principles for molecular photonics and electronics.

     
    more » « less
  2. Abstract

    Organic photovoltaic power conversion efficiencies exceeding 14% can largely be attributed to the development of nonfullerene acceptors (NFAs). Many of these molecules are structural derivatives of IDTBR and ITIC, two common NFAs. By modifying the chemical structure of the acceptor, the optical absorption, energy levels, and bulk heterojunction morphology can be tuned. However, the effect of structural modifications on NFA charge transport properties has not yet been fully explored. In this work, the relationship between chemical structure, molecular packing, and charge transport, as measured in organic thin‐film transistors (OTFTs), is investigated for two high performance NFAs, namely O‐IDTBR and ITIC, along with their structural derivatives EH‐IDTBR and ITIC‐Th. O‐IDTBR exhibits a higher n‐type saturation field effect mobility of 0.12 cm2V−1s−1compared with the other acceptors investigated. This can be attributed to the linear side chains of O‐IDTBR which direct an interdigitated columnar packing motif. The study provides insight into the transport properties and molecular packing of NFAs, thereby contributing to understanding the relationship between chemical structure, material properties, and device performance for these materials. The high electron mobility achieved by O‐IDTBR also suggests its applications can be extended to use as an n‐type semiconductor in OTFTs.

     
    more » « less
  3. null (Ed.)
    The self-assembly of foldamers into macrocycles is a simple approach to non-biological higher-order structure. Previous work on the co-assembly of ortho -phenylene foldamers with rod-shaped linkers has shown that folding and self-assembly affect each other; that is, the combination leads to new emergent behavior, such as access to otherwise unfavorable folding states. To this point this relationship has been passive. Here, we demonstrate control of self-assembly by manipulating the foldamers' conformational energy surfaces. A series of o -phenylene decamers and octamers have been assembled into macrocycles using imine condensation. Product distributions were analyzed by gel-permeation chromatography and molecular geometries extracted from a combination of NMR spectroscopy and computational chemistry. The assembly of o -phenylene decamers functionalized with alkoxy groups or hydrogens gives both [2 + 2] and [3 + 3] macrocycles. The mixture results from a subtle balance of entropic and enthalpic effects in these systems: the smaller [2 + 2] macrocycles are entropically favored but require the oligomer to misfold, whereas a perfectly folded decamer fits well within the larger [3 + 3] macrocycle that is entropically disfavored. Changing the substituents to fluoro groups, however, shifts assembly quantitatively to the [3 + 3] macrocycle products, even though the structural changes are well-removed from the functional groups directly participating in bond formation. The electron-withdrawing groups favor folding in these systems by strengthening arene–arene stacking interactions, increasing the enthalpic penalty to misfolding. The architectural changes are substantial even though the chemical perturbation is small: analogous o -phenylene octamers do not fit within macrocycles when perfectly folded, and quantitatively misfold to give small macrocycles regardless of substitution. Taken together, these results represent both a high level of structural control in structurally complex foldamer systems and the demonstration of large-amplitude structural changes as a consequence of a small structural effects. 
    more » « less
  4. The introduction of electron-withdrawing groups on 8(meso)-pyridyl-BODIPYs tends to increase the fluorescence quantum yields of this type of compound due to the decrease in electronic charge density on the BODIPY core. A new series of 8(meso)-pyridyl-BODIPYs bearing a 2-, 3-, or 4-pyridyl group was synthesized and functionalized with nitro and chlorine groups at the 2,6-positions. The 2,6-methoxycarbonyl-8-pyridyl-BODIPYs analogs were also synthesized by condensation of 2,4-dimethyl-3-methoxycarbonyl-pyrrole with 2-, 3-, or 4-formylpyridine followed by oxidation and boron complexation. The structures and spectroscopic properties of the new series of 8(meso)-pyridyl-BODIPYs were investigated both experimentally and computationally. The BODIPYs bearing 2,6-methoxycarbonyl groups showed enhanced relative fluorescence quantum yields in polar organic solvents due to their electron-withdrawing effect. However, the introduction of a single nitro group significantly quenched the fluorescence of the BODIPYs and caused hypsochromic shifts in the absorption and emission bands. The introduction of a chloro substituent partially restored the fluorescence of the mono-nitro-BODIPYs and induced significant bathochromic shifts. 
    more » « less
  5. Abstract

    ipso‐Arylative ring‐opening polymerization of 2‐bromo‐8‐aryl‐8H‐indeno[2,1‐b]thiophen‐8‐ol monomers proceeds to Mnup to 9 kg mol−1with conversion of the monomer diarylcarbinol groups to pendent conjugated aroylphenyl side chains (2‐benzoylphenyl or 2‐(4‐hexylbenzoyl)phenyl), which influence the optical and electronic properties of the resulting polythiophenes. Poly(3‐(2‐(4‐hexylbenzoyl)phenyl)thiophene) was found to have lower frontier orbital energy levels (HOMO/LUMO=−5.9/−4.0 eV) than poly(3‐hexylthiophene) owing to the electron‐withdrawing ability of the aryl ketone side chains. The electron mobility (ca. 2×10−3 cm2 V−1 s−1) for poly(3‐(2‐(4‐hexylbenzoyl)phenyl)thiophene) was found to be significantly higher than the hole mobility (ca. 8×10−6 cm2 V−1 s−1), which suggests such polymers are candidates for n‐type organic semiconductors. Density functional theory calculations suggest that backbone distortion resulting from side‐chain steric interactions could be a key factor influencing charge mobilities.

     
    more » « less