skip to main content


Title: Enhancing the performance of a fused-ring electron acceptor via extending benzene to naphthalene
We compared an indacenodithiophene(IDT)-based fused-ring electron acceptor IDIC1 with its counterpart IHIC1 in which the central benzene unit is replaced by a naphthalene unit, and investigated the effects of the benzene/naphthalene core on the optical and electronic properties as well as on the performance of organic solar cells (OSCs). Compared with benzene-cored IDIC1, naphthalene-cored IHIC1 shows a larger π-conjugation with stronger intermolecular π–π stacking. Relative to benzene-cored IDIC1, naphthalene-cored IHIC1 shows a higher lowest unoccupied molecular orbital energy level (IHIC1: −3.75 eV, IDIC1: −3.81 eV) and a higher electron mobility (IHIC1: 3.0 × 10 −4 cm 2 V −1 s −1 , IDIC1: 1.5 × 10 −4 cm 2 V −1 s −1 ). When paired with the polymer donor FTAZ that has matched energy levels and a complementary absorption spectrum, IHIC1-based OSCs show higher values of open-circuit voltage, short-circuit current density, fill factor and power conversion efficiency relative to those of the IDIC1-based control devices. These results demonstrate that extending benzene in IDT to naphthalene is a promising approach to upshift energy levels, enhance electron mobility, and finally achieve higher efficiency in nonfullerene acceptor-based OSCs.  more » « less
Award ID(s):
1639429
NSF-PAR ID:
10086557
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry C
Volume:
6
Issue:
1
ISSN:
2050-7526
Page Range / eLocation ID:
66 to 71
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report a p-π* conjugated organic molecule based on triarylborane as n-type organic semiconductor with unique alcohol solubility. Its favorable alcohol solubility even in the absence of polar side chains is mainly due to the large dipole moment and enhanced flexibility of the conjugated backbone once the boron atom is embedded. The p-π* conjugation directly affects the electronic structure as the LUMO is fully delocalized, including the boron atom, whereas the HOMO has the boron atom residing on a node. As a result, the molecule exhibits low-lying LUMO/HOMO energy levels of −3.61 eV/−5.73 eV paired with a good electron mobility of 1.37 × 10 −5 cm 2 V −1 s −1 . We further demonstrate its application as an electron acceptor in alcohol-processed organic solar cells (OSCs). To our best knowledge, this p-π* conjugated molecule is the first alcohol-processable non-fullerene electron acceptor, a feature that is in strong demand for environmentally friendly processing of OSCs. 
    more » « less
  2. Abstract

    Relative to electron donors for bulk heterojunction organic solar cells (OSCs), electron acceptors that absorb strongly in the visible and even near‐infrared region are less well developed, which hinders the further development of OSCs. Fullerenes as traditional electron acceptors have relatively weak visible absorption and limited electronic tunability, which constrains the optical and electronic properties required of the donor. Here, high‐performance fullerene‐free OSCs based on a combination of a medium‐bandgap polymer donor (FTAZ) and a narrow‐bandgap nonfullerene acceptor (IDIC), which exhibit complementary absorption, matched energy levels, and blend with pure phases on the exciton diffusion length scale, are reported. The single‐junction OSCs based on the FTAZ:IDIC blend exhibit power conversion efficiencies up to 12.5% with a certified value of 12.14%. Transient absorption spectroscopy reveals that exciting either the donor or the acceptor component efficiently generates mobile charges, which do not suffer from recombination to triplet states. Balancing photocurrent generation between the donor and nonfullerene acceptor removes undesirable constraints on the donor imposed by fullerene derivatives, opening a new avenue toward even higher efficiency for OSCs.

     
    more » « less
  3. Abstract

    Achieving high electrical conductivity and thermoelectric power factor simultaneously for n‐type organic thermoelectrics is still challenging. By constructing two new acceptor‐acceptor n‐type conjugated polymers with different backbones and introducing the 3,4,5‐trimethoxyphenyl group to form the new n‐type dopant 1,3‐dimethyl‐2‐(3,4,5‐trimethoxyphenyl)‐2,3‐dihydro‐1H‐benzo[d]imidazole (TP‐DMBI), high electrical conductivity of 11 S cm−1and power factor of 32 μW m−1 K−2are achieved. Calculations using Density Functional Theory show that TP‐DMBI presents a higher singly occupied molecular orbital (SOMO) energy level of −1.94 eV than that of the common dopant 4‐(1, 3‐dimethyl‐2, 3‐dihydro‐1H‐benzoimidazol‐2‐yl) phenyl) dimethylamine (N‐DMBI) (−2.36 eV), which can result in a larger offset between the SOMO of dopant and lowest unoccupied molecular orbital (LUMO) of n‐type polymers, though that effect may not be dominant in the present work. The doped polymer films exhibit higher Seebeck coefficient and power factor than films using N‐DMBI at the same doping levels or similar electrical conductivity levels. Moreover, TP‐DMBI doped polymer films offer much higher electron mobility of up to 0.53 cm2 V−1 s−1than films with N‐DMBI doping, demonstrating the potential of TP‐DMBI, and 3,4,5‐trialkoxy DMBIs more broadly, for high performance n‐type organic thermoelectrics.

     
    more » « less
  4. Abstract

    Achieving high electrical conductivity and thermoelectric power factor simultaneously for n‐type organic thermoelectrics is still challenging. By constructing two new acceptor‐acceptor n‐type conjugated polymers with different backbones and introducing the 3,4,5‐trimethoxyphenyl group to form the new n‐type dopant 1,3‐dimethyl‐2‐(3,4,5‐trimethoxyphenyl)‐2,3‐dihydro‐1H‐benzo[d]imidazole (TP‐DMBI), high electrical conductivity of 11 S cm−1and power factor of 32 μW m−1 K−2are achieved. Calculations using Density Functional Theory show that TP‐DMBI presents a higher singly occupied molecular orbital (SOMO) energy level of −1.94 eV than that of the common dopant 4‐(1, 3‐dimethyl‐2, 3‐dihydro‐1H‐benzoimidazol‐2‐yl) phenyl) dimethylamine (N‐DMBI) (−2.36 eV), which can result in a larger offset between the SOMO of dopant and lowest unoccupied molecular orbital (LUMO) of n‐type polymers, though that effect may not be dominant in the present work. The doped polymer films exhibit higher Seebeck coefficient and power factor than films using N‐DMBI at the same doping levels or similar electrical conductivity levels. Moreover, TP‐DMBI doped polymer films offer much higher electron mobility of up to 0.53 cm2 V−1 s−1than films with N‐DMBI doping, demonstrating the potential of TP‐DMBI, and 3,4,5‐trialkoxy DMBIs more broadly, for high performance n‐type organic thermoelectrics.

     
    more » « less
  5. Abstract

    ipso‐Arylative ring‐opening polymerization of 2‐bromo‐8‐aryl‐8H‐indeno[2,1‐b]thiophen‐8‐ol monomers proceeds to Mnup to 9 kg mol−1with conversion of the monomer diarylcarbinol groups to pendent conjugated aroylphenyl side chains (2‐benzoylphenyl or 2‐(4‐hexylbenzoyl)phenyl), which influence the optical and electronic properties of the resulting polythiophenes. Poly(3‐(2‐(4‐hexylbenzoyl)phenyl)thiophene) was found to have lower frontier orbital energy levels (HOMO/LUMO=−5.9/−4.0 eV) than poly(3‐hexylthiophene) owing to the electron‐withdrawing ability of the aryl ketone side chains. The electron mobility (ca. 2×10−3 cm2 V−1 s−1) for poly(3‐(2‐(4‐hexylbenzoyl)phenyl)thiophene) was found to be significantly higher than the hole mobility (ca. 8×10−6 cm2 V−1 s−1), which suggests such polymers are candidates for n‐type organic semiconductors. Density functional theory calculations suggest that backbone distortion resulting from side‐chain steric interactions could be a key factor influencing charge mobilities.

     
    more » « less