skip to main content

This content will become publicly available on October 25, 2022

Title: 3,4,5‐Trimethoxy Substitution on an N‐DMBI Dopant with New N‐Type Polymers: Polymer‐Dopant Matching for Improved Conductivity‐Seebeck Coefficient Relationship
Authors:
 ;  ;  ;  ;  ;  ;  
Award ID(s):
1708245 2107360
Publication Date:
NSF-PAR ID:
10302562
Journal Name:
Angewandte Chemie International Edition
ISSN:
1433-7851
Publisher:
Wiley Blackwell (John Wiley & Sons)
Sponsoring Org:
National Science Foundation
More Like this
  1. Electron-transport materials such as fullerenes are widely used in perovskite solar cells to selectively transfer the photogenerated electrons to the electrodes. In order to minimize losses at the interface between the fullerene and the electrode, it is important to reduce the energy difference between the transport level of the two materials. A common approach to reduce such energy mismatch is to increase the charge carrier density in the semiconductor through doping. A variety of molecular dopants have been reported to reduce (n-dope) fullerenes. However, most of them are either difficult to process or extremely air sensitive, with most n-dopants leadingmore »to the formation of undesirable side products. Dimers formed by 19-electron organometallic sandwich compounds combine strong reducing ability, clean reactivity, and moderate air stability, while being processable both from solution and in vacuum. In this work, we have investigated the use of pentamethylcyclopentadienyl mesitylene ruthenium dimer, (RuCp*mes) 2 , as a dopant for C 60 in fully vacuum-deposited n–i–p perovskite solar cells. The (RuCp*mes) 2 was either co-evaporated with the fullerene or deposited as a pure thin film on top of the transparent electrode prior to the deposition of the fullerene. It was found that both the co-evaporated blends and the bilayers are effective electron-transport layers, leading to solar cells with efficiencies up to 18%.« less
  2. This work reports a comprehensive investigation of the effect of gallium telluride (GaTe) cell temperature variation (TGaTe) on the morphological, optical, and electrical properties of doped-GaAsSb nanowires (NWs) grown by Ga-assisted molecular beam epitaxy (MBE). These studies led to an optimum doping temperature of 550 °C for the growth of tellurium (Te)-doped GaAsSb NWs with the best optoelectronic and structural properties. Te incorporation resulted in a decrease in the aspect ratio of the NWs causing an increase in the Raman LO/TO vibrational mode intensity ratio, large PL emission with an exponential decay tail on the high energy side, promoting tunnel-assistedmore »current conduction in ensemble NWs and significant photocurrent enhancement in the single nanowire. A Schottky barrier photodetector using Te-doped ensemble NWs with broad spectral range and a longer wavelength cutoff at ~ 1.2 µm was demonstrated. These photodetectors exhibited responsivity in the range of 580 – 620 A/W and detectivity of 1.2 – 3.8 × 1012 Jones. The doped GaAsSb NWs have the potential for further improvement, paving the path for high-performance near-infrared (NIR) photodetection applications.« less