Integrating molecular photon upconversion via triplet–triplet annihilation (TTA-UC) directly into a solar cell offers a means of harnessing sub-bandgap, near infrared (NIR) photons and surpassing the Shockley–Queisser limit. However, all integrated TTA-UC solar cells to date only harness visible light. Here, we incorporate an osmium polypyridal complex (Os) as the triplet sensitizer in a metal ion linked multilayer photoanode that is capable of harnessing NIR light via S 0 to T 1 * excitation, triple energy transfer to a phosphonated bis(9,10-diphenylethynyl)anthracene annihilator (A), TTA-UC, and electron injection into TiO 2 from the upcoverted state. The TiO 2 -A-Zn-Os devices have five-fold higher photocurrent (∼3.5 μA cm −2 ) than the sum of their parts. IPCE data and excitation intensity dependent measurements indicate that the NIR photons are harvested through a TTA-UC mechanism. Transient absorption spectroscopy is used to show that the low photocurrent, as compared to visible light harnessing TTA-UC solar cells, can be atributed to: (1) slow sensitizer to annihilator triplet energy transfer, (2) a low injection yield for the annihilator, and (3) fast back energy transfer from the upconverted state to the sensitizer. Regardless, these results serve as a proof-of-concept that NIR photons can be harnessed via anmore »
Fabrication of single-chain nanoparticles through the dimerization of pendant anthracene groups via photochemical upconversion
We report on the use of visible light as the driving force for the intramolecular dimerization of pendant anthracene groups on a methacrylic polymer to induce the formation of single-chain nanoparticles (SCNPs). Using a 532 nm green laser light source and platinum octaethylporphyrin as a sensitizer, we first demonstrated the use of TTA-UC to dimerize monomeric anthracene, and subsequently applied this concept to dilute poly((methyl methacrylate)- stat -(anthracenyl methacrylate)) samples. A combination of triple-detection size-exclusion chromatography, atomic force microscopy, and UV-visible spectroscopy confirmed the formation of the SCNPs. This report pioneers the use of TTA-UC to drive photochemical reactions in polymeric systems, and showcases the potential for TTA-UC in the development of nanoobjects.
- Award ID(s):
- 1659340
- Publication Date:
- NSF-PAR ID:
- 10087319
- Journal Name:
- Dalton Transactions
- Volume:
- 47
- Issue:
- 26
- Page Range or eLocation-ID:
- 8663 to 8669
- ISSN:
- 1477-9226
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Self-assembly of sensitizer and acceptor molecules has recently emerged as a promising strategy to facilitate and harness photon upconversion via triplet–triplet annihilation (TTA-UC). In addition to the energetic requirements, the structure and relative orientation of these molecules can have a strong influence on TTA-UC rates and efficiency. Here we report the synthesis of five different acceptor molecules composed of an anthracene core functionalized with 9,10- or 2,6-phenyl, methyl, or directly bound phosphonic acid groups and their incorporation into self-assembled bilayers on a ZrO 2 surface. All five films facilitate green-to-blue photon upconversion with Φ uc as high as 0.0023. The efficiency of TTA, and not triplet energy transfer, fluorescence, or losses via FRET, was primarily responsible for dictating the Φ uc emission. Even for molecules having similar photophysical properties, variation in the position of the phosphonic acid resulted in dramatically different Φ TTA , I th values, γ TTA , and D . Interestingly, we observed a strong linear correlation between Φ TTA and the I th value but the cause of this relationship, if any, is unclear.
-
Optical upconversion (UC) of low energy photons into high energy photons enables solar cells to harvest photons with energies below the band gap of the absorber, reducing the transmission loss. UC based on triplet–triplet annihilation (TTA) in organic chromophores can upconvert photons from sunlight, albeit with low conversion efficiency. We utilize three energy-based criteria to assess the UC potential of TTA emitters in terms of the quantum yield (QY) and the anti-Stokes shift. The energy loss in the singlet pathway of an emitter encounter complex, where a high energy photon is emitted, determines whether a chromophore may undergo TTA. The energy loss in the triplet pathway, which is the main competing process, impacts the TTA QY. The energy difference between the lowest singlet and triplet excitation states in TTA emitters sets an upper bound for the anti-Stokes shift of TTA-UC. Using the energetic criteria evaluated by time-dependent density functional theory (TDDFT) calculations, we find that benzo[ a ]tetracene, benzo[ a ]pyrene, and their derivatives are promising TTA emitters. The energetics assessment and computer simulations could be used to efficiently discover and design more candidate high-performance TTA emitters.
-
Triplet–triplet annihilation upconversion (TTA-UC) is a process that shows promise for applications such as energy-harvesting and light-generation technologies. The irradiance dependent performance of TTA-UC systems is typically gauged using a graphical analysis, rather than a detailed model. Additionally, kinetic models for TTA-UC rarely incorporate mass conservation, which is a phenomenon that can have important consequences under experimentally relevant conditions. We present an analytical, mass-conserving kinetic model for TTA-UC, and demonstrate that the mass-conservation constraint cannot generally be ignored. This model accounts for saturation in TTA-UC data. Saturation complicates the interpretation of the threshold irradiance I th , a popular performance metric. We propose two alternative figures of merit for overall performance. Finally, we show that our model can robustly fit experimental data from a wide variety of sensitized TTA-UC systems, enabling the direct and accurate determination of I th and of our proposed performance metrics. We employ this fitting procedure to benchmark and compare these metrics, using data from the literature.
-
Water is an environmentally friendly medium for conducting reversible deactivation radical polymerizations. In this paper, we report the investigation of iodine-mediated photocontrolled atom transfer radical polymerization (photoATRP) in aqueous media. The iodine-based initiator was generated by an in situ halogen exchange from a commercially available bromine-based initiator, ethyl α-bromophenylacetate, using different iodide salts. Fast and well-controlled polymerization of a water-soluble methacrylate monomer was achieved in water under visible light irradiation, including blue, green and yellow lights. The nature of the reaction medium greatly affected the kinetics and control over the growth of polymers. Polymerizations in water resulted in a well-controlled reaction that provided high monomer conversion and polymers with low dispersities, whereas control over the polymerization was poor in bulk or in an organic solvent, N , N -dimethylformamide. Polymerizations were performed over a wide range of visible light in the absence of any photocatalyst. The selection of water as a reaction medium enabled use of iodide salts without the need for solubilizing agents. Moreover, iodine-mediated photoATRP was successfully performed in the presence of residual oxygen, signifying the potential of this polymerization system to tolerate oxygen without performing deoxygenation processes.