skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Why the Economics Profession Must Actively Participate in the Privacy Protection Debate
When Google or the US Census Bureau publishes detailed statistics on browsing habits or neighborhood characteristics, some privacy is lost for everybody while supplying public information. To date, economists have not focused on the privacy loss inherent in data publication. In their stead, these issues have been advanced almost exclusively by computer scientists who are primarily interested in technical problems associated with protecting privacy. Economists should join the discussion, first to determine where to balance privacy protection against data quality--a social choice problem. Furthermore, economists must ensure new privacy models preserve the validity of public data for economic research.  more » « less
Award ID(s):
1131848
PAR ID:
10087389
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Economic Association
Date Published:
Journal Name:
AEA Papers and Proceedings
Volume:
109
ISSN:
2574-0768
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Agricultural and applied economists have maintained a public discourse at the Agricultural and Applied Economics Association (AAEA) meetings and subsequently published papers discussing the mission of land‐grant institutions and the role of AAEA members in that mission. With a content analysis of 4001 Invited Papers and Presidential Speeches, we find agricultural and applied economists questioned their profession's purpose and role within the land‐grant system. The reflective questions still apply to land‐grant institutions and the agricultural and applied economics profession. We argue that AAEA members are crucial in addressing the food and agricultural challenges connected to society's deepest needs today and into the future. 
    more » « less
  2. Within the ongoing disruption of the COVID-19 pandemic, technologically mediated health surveillance programs have vastly intensified and expanded to new spaces. Popular understandings of medical and health data protections came into question as a variety of institutions introduced new tools for symptom tracking, contact tracing, and the management of related data. These systems have raised complex questions about who should have access to health information, under what circumstances, and how people and institutions negotiate relationships between privacy, public safety, and care during times of crisis. In this paper, we take up the case of a large public university working to keep campus productive during COVID-19 through practices of placemaking, symptom screeners, and vaccine mandate compliance databases. Drawing on a multi-methods study including thirty-eight interviews, organizational documents, and discursive analysis, we show where and for whom administrative care infrastructures either misrecognized or torqued (Bowker and Star 1999) the care relationships that made life possible for people in the university community. We argue that an analysis of care—including the social relations that enable it and those that attempt to hegemonically define it—opens important questions for how people relate to data they produce about their bodies as well as to the institutions that manage them. Furthermore, we argue that privacy frameworks that rely on individual rights, essential categories of “sensitive information,” or the normative legitimacy of institutional practices are not equipped to reveal how people negotiate privacy and care in times of crisis. 
    more » « less
  3. Federated Learning (FL) is a promising framework for multiple clients to learn a joint model without directly sharing the data. In addition to high utility of the joint model, rigorous privacy protection of the data and communication efficiency are important design goals. Many existing efforts achieve rigorous privacy by ensuring differential privacy for intermediate model parameters, however, they assume a uniform privacy parameter for all the clients. In practice, different clients may have different privacy requirements due to varying policies or preferences. In this paper, we focus on explicitly modeling and leveraging the heterogeneous privacy requirements of different clients and study how to optimize utility for the joint model while minimizing communication cost. As differentially private perturbations affect the model utility, a natural idea is to make better use of information submitted by the clients with higher privacy budgets (referred to as "public" clients, and the opposite as "private" clients). The challenge is how to use such information without biasing the joint model. We propose P rojected F ederated A veraging (PFA), which extracts the top singular subspace of the model updates submitted by "public" clients and utilizes them to project the model updates of "private" clients before aggregating them. We then propose communication-efficient PFA+, which allows "private" clients to upload projected model updates instead of original ones. Our experiments verify the utility boost of both algorithms compared to the baseline methods, whereby PFA+ achieves over 99% uplink communication reduction for "private" clients. 
    more » « less
  4. Abstract Location-based alerts have gained increasing popularity in recent years, whether in the context of healthcare (e.g., COVID-19 contact tracing), marketing (e.g., location-based advertising), or public safety. However, serious privacy concerns arise when location data are used in clear in the process. Several solutions employ searchable encryption (SE) to achievesecurealerts directly on encrypted locations. While doing so preserves privacy, the performance overhead incurred is high. We focus on a prominent SE technique in the public-key setting–hidden vector encryption, and propose a graph embedding technique to encode location data in a way that significantly boosts the performance of processing on ciphertexts. We show that the optimal encoding is NP-hard, and we provide three heuristics that obtain significant performance gains: gray optimizer, multi-seed gray optimizer and scaled gray optimizer. Furthermore, we investigate the more challenging case of dynamic alert zones, where the area of interest changes over time. Our extensive experimental evaluation shows that our solutions can significantly improve computational overhead compared to existing baselines. 
    more » « less
  5. BackgroundMobile mental health systems (MMHS) have been increasingly developed and deployed in support of monitoring, management, and intervention with regard to patients with mental disorders. However, many of these systems rely on patient data collected by smartphones or other wearable devices to infer patients’ mental status, which raises privacy concerns. Such a value-privacy paradox poses significant challenges to patients’ adoption and use of MMHS; yet, there has been limited understanding of it. ObjectiveTo address the significant literature gap, this research aims to investigate both the antecedents of patients’ privacy concerns and the effects of privacy concerns on their continuous usage intention with regard to MMHS. MethodsUsing a web-based survey, this research collected data from 170 participants with MMHS experience recruited from online mental health communities and a university community. The data analyses used both repeated analysis of variance and partial least squares regression. ResultsThe results showed that data type (P=.003), data stage (P<.001), privacy victimization experience (P=.01), and privacy awareness (P=.08) have positive effects on privacy concerns. Specifically, users report higher privacy concerns for social interaction data (P=.007) and self-reported data (P=.001) than for biometrics data; privacy concerns are higher for data transmission (P=.01) and data sharing (P<.001) than for data collection. Our results also reveal that privacy concerns have an effect on attitude toward privacy protection (P=.001), which in turn affects continuous usage intention with regard to MMHS. ConclusionsThis study contributes to the literature by deepening our understanding of the data value-privacy paradox in MMHS research. The findings offer practical guidelines for breaking the paradox through the design of user-centered and privacy-preserving MMHS. 
    more » « less