Elementary school is the first opportunity most students have to learn about STEM; however, elementary teachers are sometimes the least confident and prepared to teach STEM concepts and practices. Research Experience for Teachers (RET) programs are an established form of K-12 teacher professional development in which teachers are invited to work as members of a laboratory research team to increase their enthusiasm, knowledge and experience in STEM fields. The Engineering for Biology: Multidisciplinary Research Experiences for Teachers (MRET) of Elementary Grades was a 7-week summer program in which teachers were embedded as contributing members of engineering laboratory research teams and was established with the goals of (1) increasing teacher knowledge of STEM concepts and practices, (2) fostering mentoring relationships among researchers and teachers in each laboratory, and (3) guiding the translation of the teachers’ laboratory experience into the classroom through the development of STEM learning units. This exploratory study focuses on the second goal, and involves the use of developmental network theory to discriminate mentoring among participants within the summer 2017 and 2018 cycles of MRET. Using data collected in daily observations as well as daily activity and conversation logs submitted by all participants during the lab experience, post participation surveys, and post program semi structured interviews, we have characterized a network of mentoring that existed within the lab portion of MRET as being multidirectional and potentially beneficial to all members, including researchers as well as teachers. This finding challenges the currently accepted assumption that teachers are the primary beneficiaries of mentoring within RET programs. If demonstrated to be appropriate and transferrable to the RET context, such a perspective could enhance our understanding of the experience and be used for maximizing the outcomes for all participants.
more »
« less
Stanford’s Summer Research Program for Teachers Long-Term Outcomes Study
Research Experience for Teachers (RET) programs have been placing K-12 teachers in university research labs for almost three decades (Pop et al., 2010). However, the long-term impacts are rarely explored. This paper summarizes data from a survey study of 135/158 teachers (88% response rate) who participated in Stanford University’s RET programs between 2005 and 2017. The purpose of the study was to gauge the lasting impact of RET, if any, on teacher retention and classroom and professional practices. The data strongly suggest that participants gain long-lasting personal and professional benefits from participation--value that seems to be especially magnified for mid- to late-career teachers who are well established in their teaching practices but committed to continuous improvement. Furthermore, if the self-reports are accurate, these results would presumably also accrue to teachers’ students. Findings are attributed to the efficacy of the RET model. The authors argue for a nationwide evaluation of the efficacy of RET for teacher retention and professional development.
more »
« less
- Award ID(s):
- 1760810
- PAR ID:
- 10087390
- Date Published:
- Journal Name:
- Journal of STEM outreach
- Volume:
- 2
- ISSN:
- 2576-6767
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Research Experience for Teachers (RET) programs are National Science Foundation (NSF) funded programs designed to provide K- 12 Science, Technology, Engineering, and Mathematics (STEM) teachers with immersive, hands-on research experiences at Universities around the country. The NSF RET in nanotechnology encourages teachers to translate cutting-edge research into culturally relevant Project-Based Learning (PjBL) and engineering curriculum. Traditionally, the evaluation of RET programs focuses on the growth and development of teacher self-efficacy, engineering content knowledge gains, or classroom implementation of developed curriculum materials. However, reported methods for evaluating the impact of RETs on their female, minority student populations' high school graduation and undergraduate STEM major rates are limited. This study's objective was to compare RET high school student graduation rates and undergraduate STEM major rates across gender, race, and ethnicity to a comparison sample to determine the RET program's long-term impact on students' likelihood of pursuing STEM careers. The approach of collecting and analyzing the Texas Education Research Center Database (EdRC) data is a novel methodology for assessing RET programs' effectiveness on students. The EdRC is a repository of K-12 student data from the Texas Education Agency (TEA) and Higher Education data from the Texas Higher Education Coordinating Board (THECB). This joint database contains demographic, course registration, graduation, standardized testing, and college major, among others, for all students that attended a K-12 public school in Texas and any college in Texas, public or private. The RET program participants at Rice University (2010 – 2018) taught numerous students, a sample size of 11,240 students. A propensity score matching generated the student comparison group within the database. Students' school campus, gender, race/ethnic status, and English proficiency status were applied to produce a graduation comparison sample size of 11,240 students of Non-RET participants. Linking the TEA database to the THECB database resulted in college STEM participants and comparison sample sizes of 4,029 students. The project team conducted a logistic regression using RET status to predict high school graduation rates as a whole and by individual variables: gender, Asian American, Black, Caucasian, and Latinx students. All models were significant at p less than 0.05, with models in favor of students RET teachers. The project team conducted a logistic regression using RET status to predict student STEM undergraduate major rates as a whole and by individual variables: Gender, Asian American, Black, Caucasian, and Latinx students. African American and Caucasian models were significant at p less than 0.05; Gender, Asian American, and Latinx models were marginally significant (0.05 less than p greater than 0.1), where RET students had higher STEM major rates than matched controls. The findings demonstrate that RET programs have a long-term positive impact on the students' high school graduation rates and undergraduate STEM major rates. As teachers who participate in the RET programs are more likely to conduct courses using PjBL strategies and incorporate real-world engineering practices, female and minority students are more likely to benefit from these practices and seek careers utilizing these skills.more » « less
-
Instructional shifts required by equitable, reform‐based science instruction are challenging, especially in the elementary context. Such shifts require professional development (PD) that supports teacher internalization of new pedagogical strategies as well as changes in beliefs about how students learn. Because of this complexity, many PD programs struggle to foster lasting pedagogical shifts, necessitating further investigation into why some teachers successfully embrace reform practices while others do not. This qualitative study uses a nonlinear, iterative model of teacher learning (Interconnected Model of Professional Growth; Clarke & Hollingsworth, 2002) alongside professional noticing to help understand why elementary teachers in science PD differentially make sense of and internalize new pedagogies. Findings indicate that teachers most likely to adopt reform‐based instructional practices from the PD were those who clearly connected student learning to their instructional moves. In addition, teachers who more actively attended to student sensemaking and productive struggle took up pedagogies from the PD more substantively than did colleagues who attended solely to student engagement and affect. Finally, teachers who attended to and valued novel ideas from students’ lived experiences were more likely to change their beliefs about students’ capacity to learn science, and thus more likely to see the value of instructional practices from the PD. In sum, structuring PD to build on these specific teacher noticing skills can encourage more teachers to move away from traditional, teacher‐directed instructional practice, and more fully support reform‐based instructional practices.more » « less
-
In 2019, University of Houston (UH) at Houston, Texas was awarded an NSF Research Experience for Teachers (RET) site grant titled “RET Site: High School Teacher Experience in Engineering Design and Manufacturing.” The goal of the project is to host 12 high school teachers each summer to participate in engineering design and manufacturing research and then convert their experience into high school curriculum. Given the experience from the first year’s operation and assessment, it was noted that the extant teacher self-efficacy surveys need to be further improved according to the specific needs of RET site. As such, an updated set of assessment tools was developed to evaluate the impact of RET site on high school teacher participants. In particular, a new teacher self-efficacy survey was created from synthesizing multiple sources including Bandura’s Instrument Teacher Self-Efficacy Scale, Collective Teacher Beliefs, and Teachers’ Sense of Efficacy Scale (Ohio State Teacher Efficacy Scale). Besides the new self-efficacy survey, more specific questions were added to pre- and post-summer self-reported questionnaires to better understand the teachers’ perception and receptance of the summer experience. Interviews were conducted individually instead of using a focus group. This allows the interviewee to be more vocal during the interview, allowing more in-depth understanding of their perception for future improvement. The new assessment tools were applied to the second cohort of 12 teachers in summer 2022. The assessment results show that the assessment tools were able to effectively capture teachers’ change in perception and evaluate the affective impact of the RET site. In the future, the tools may be improved and used in similar teacher professional development activities.more » « less
-
Preservice teacher preparation programs and inservice professional development enhance science teaching self-efficacy. Research has shown that elementary teachers often have low self-efficacy for teaching science and engineering. However, there is less evidence surrounding engineering teaching self-efficacy. In this systematic review of literature, we explored the research question: What does the existing literature on self-efficacy reveal about fostering elementary teachers’ engineering teaching self-efficacy? We (1) synthesize the existing research on engineering teaching self-efficacy and (2) describe trends in research and uncover gaps that exist, including recommendations for future research. Among the 117 articles included in our full systematic review of science and engineering teaching self-efficacy, only 13 empirical studies focused specifically on engineering teaching self-efficacy. With a dearth of studies in both preservice and inservice contexts, there is a need for additional research on engineering teaching self-efficacy. In particular, longitudinal studies that track change over time and measure lasting effects of interventions. Further, detailed explorations of the factors that impact engineering teaching self-efficacy across multiple contexts are needed. Findings from these studies will help STEM educators to inform the design of preservice teacher education programs as well as inservice professional development opportunities.more » « less