skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling and Control of 2-DOF Dielectric Elastomer Diaphragm Actuator
In optical systems, reflectors are commonly used for directing light beams to desired directions. In this paper, a dielectric elastomer (DE) based optical manipulator is developed for two degrees-of-freedom (2-DOF) manipulation. The DE manipulator consists of a diaphragm with four segments that are controlled in two pairs, thus generating 2-DOF tilting motions. Due to its soft and gear-less moving structure, the DE manipulator is lightweight and naturally resistant to mechanical vibrations. Moreover, its nonelectromagnetic-driven mechanism allows it to work under the environments that are exposed to strong magnetic fields. To design a robust control strategy for the actuator, a physics-based and control-oriented nonlinear model is then developed and linearized around the equilibrium point. A feedback control system, which consists of two H-infinity controls, is developed to track two tilting angles along two axes. Experimental results have shown that this manipulator is able to track 0.3° 2-DOF tilting angle with 0.03° accuracy.  more » « less
Award ID(s):
1747855
PAR ID:
10087410
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE/ASME Transactions on Mechatronics
Volume:
24
Issue:
1
ISSN:
1083-4435
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In this paper, we study the analytical and experimental control of a 7-DOF robot manipulator. A model-free decentralized adaptive control strategy is presented for the tracking control of the manipulator. The problem formulation and experimental results demonstrate the computational efficiency and simplicity of the proposed method. The results presented here are one of the first known experiments on a redundant 7-DOF robot. The efficacy of the adaptive decentralized controller is demonstrated experimentally by using the Baxter robot to track a desired trajectory. Simulation and experimental results clearly demonstrate the versatility, tracking performance, and computational efficiency of this method. 
    more » « less
  2. We formulate a predictor-based controller for a high-DOF manipulator to compensate a time-invariant input delay during a pick-and-place task. Robot manipulators are widely used in tele-manipulation systems on the account of their reliable, fast, and precise motions while they are subject to large delays. Using common control algorithms on such delay systems can cause not only poor control performance, but also catastrophic instability in engineering applications. Therefore, delays need to be compensated in designing robust control laws. As a case study, we focus on a 7-DOF Baxter manipulator subject to three different input delays. First, delay-free dynamic equations of the Baxter manipulator are derived using the Lagrangian method. Then, we formulate a predictor-based controller, in the presence of input delay, in order to track desired trajectories. Finally, the effects of input delays in the absence of a robust predictor are investigated, and then the performance of the predictor-based controller is experimentally evaluated to reveal robustness of the algorithm formulated. Simulation and experimental results demonstrate that the predictor-based controller effectively compensates input delays and achieves closed-loop stability. 
    more » « less
  3. Liu, Tengfei; Ou, Yan. (Ed.)
    We design a regulation-triggered adaptive controller for robot manipulators to efficiently estimate unknown parameters and to achieve asymptotic stability in the presence of coupled uncertainties. Robot manipulators are widely used in telemanipulation systems where they are subject to model and environmental uncertainties. Using conventional control algorithms on such systems can cause not only poor control performance, but also expensive computational costs and catastrophic instabilities. Therefore, system uncertainties need to be estimated through designing a computationally efficient adaptive control law. We focus on robot manipulators as an example of a highly nonlinear system. As a case study, a 2-DOF manipulator subject to four parametric uncertainties is investigated. First, the dynamic equations of the manipulator are derived, and the corresponding regressor matrix is constructed for the unknown parameters. For a general nonlinear system, a theorem is presented to guarantee the asymptotic stability of the system and the convergence of parameters’ estimations. Finally, simulation results are discussed for a two-link manipulator, and the performance of the proposed scheme is thoroughly evaluated. 
    more » « less
  4. Robotic manipulators with diverse structures find widespread use in both industrial and medical applications. Therefore, designing an appropriate controller is of utmost importance when utilizing such robots. In this research, we present a robust data-driven control method for the regulation of a 2-degree-of-freedom (2-DoF) robot manipulator. The nonlinear dynamic model of the 2-DoF robot arm is linearized using Koopman theory. The data mode decomposition (DMD) method is applied to generate the Koopman operator. A fractional sliding mode control (FOSMC) is employed to govern the data-driven linearized dynamic model. We compare the performance of Koopman fractional sliding mode control (KFOSMC) with conventional proportional integral derivative (PID) control and FOSMC prior to linearization by Koopman theory. The results demonstrate that KFOSMC outperforms PID and FOSMC in terms of high tracking performance, low tracking error, and minimal control signals. 
    more » « less
  5. null (Ed.)
    We formulate a Nash-based feedback control law for an Euler-Lagrange system to yield a solution to non-cooperative differential game. The robot manipulators are broadly utilized in industrial units on the account of their reliable, fast, and precise motions, while consuming a significant lumped amount of energy. Therefore, an optimal control strategy needs to be implemented in addressing efficiency issues, while delivering accuracy obligation. As a case study, we here focus on a 7-DOF robot manipulator through formulating a two-player feedback nonzero-sum differential game. First, coupled Euler-Lagrangian dynamic equations of the manipulator are briefly presented. Then, we formulate the feedback Nash equilibrium solution in order to achieve perfect trajectory tracking. Finally, the performance of the Nash-based feedback controller is analytically and experimentally examined. Simulation and experimental results reveal that the control law yields almost perfect tracking and achieves closed-loop stability. 
    more » « less