skip to main content


Title: Modeling and Control of 2-DOF Dielectric Elastomer Diaphragm Actuator
In optical systems, reflectors are commonly used for directing light beams to desired directions. In this paper, a dielectric elastomer (DE) based optical manipulator is developed for two degrees-of-freedom (2-DOF) manipulation. The DE manipulator consists of a diaphragm with four segments that are controlled in two pairs, thus generating 2-DOF tilting motions. Due to its soft and gear-less moving structure, the DE manipulator is lightweight and naturally resistant to mechanical vibrations. Moreover, its nonelectromagnetic-driven mechanism allows it to work under the environments that are exposed to strong magnetic fields. To design a robust control strategy for the actuator, a physics-based and control-oriented nonlinear model is then developed and linearized around the equilibrium point. A feedback control system, which consists of two H-infinity controls, is developed to track two tilting angles along two axes. Experimental results have shown that this manipulator is able to track 0.3° 2-DOF tilting angle with 0.03° accuracy.  more » « less
Award ID(s):
1747855
NSF-PAR ID:
10087410
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE/ASME Transactions on Mechatronics
Volume:
24
Issue:
1
ISSN:
1083-4435
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We formulate a predictor-based controller for a high-DOF manipulator to compensate a time-invariant input delay during a pick-and-place task. Robot manipulators are widely used in tele-manipulation systems on the account of their reliable, fast, and precise motions while they are subject to large delays. Using common control algorithms on such delay systems can cause not only poor control performance, but also catastrophic instability in engineering applications. Therefore, delays need to be compensated in designing robust control laws. As a case study, we focus on a 7-DOF Baxter manipulator subject to three different input delays. First, delay-free dynamic equations of the Baxter manipulator are derived using the Lagrangian method. Then, we formulate a predictor-based controller, in the presence of input delay, in order to track desired trajectories. Finally, the effects of input delays in the absence of a robust predictor are investigated, and then the performance of the predictor-based controller is experimentally evaluated to reveal robustness of the algorithm formulated. Simulation and experimental results demonstrate that the predictor-based controller effectively compensates input delays and achieves closed-loop stability. 
    more » « less
  2. null (Ed.)
    In this paper, we study the analytical and experimental control of a 7-DOF robot manipulator. A model-free decentralized adaptive control strategy is presented for the tracking control of the manipulator. The problem formulation and experimental results demonstrate the computational efficiency and simplicity of the proposed method. The results presented here are one of the first known experiments on a redundant 7-DOF robot. The efficacy of the adaptive decentralized controller is demonstrated experimentally by using the Baxter robot to track a desired trajectory. Simulation and experimental results clearly demonstrate the versatility, tracking performance, and computational efficiency of this method. 
    more » « less
  3. Liu, Tengfei ; Ou, Yan. (Ed.)
    We design a regulation-triggered adaptive controller for robot manipulators to efficiently estimate unknown parameters and to achieve asymptotic stability in the presence of coupled uncertainties. Robot manipulators are widely used in telemanipulation systems where they are subject to model and environmental uncertainties. Using conventional control algorithms on such systems can cause not only poor control performance, but also expensive computational costs and catastrophic instabilities. Therefore, system uncertainties need to be estimated through designing a computationally efficient adaptive control law. We focus on robot manipulators as an example of a highly nonlinear system. As a case study, a 2-DOF manipulator subject to four parametric uncertainties is investigated. First, the dynamic equations of the manipulator are derived, and the corresponding regressor matrix is constructed for the unknown parameters. For a general nonlinear system, a theorem is presented to guarantee the asymptotic stability of the system and the convergence of parameters’ estimations. Finally, simulation results are discussed for a two-link manipulator, and the performance of the proposed scheme is thoroughly evaluated. 
    more » « less
  4. Abstract Background

    Insertable laparoscopic camera systems were developed to improve the minimally invasive surgeries. Robotic degrees of freedom for an insertable laparoscopic camera are required to adjust the camera's orientation and position inside an abdominal cavity.

    Methods

    This paper demonstrates an insertable magnetic actuated robotic camera system with two‐degree‐of‐freedom (2‐DoF) orientation control for single incision laparoscopic surgery. The camera system design consists of an external magnetic control unit and a fully insertable camera capsule. This system features a unified mechanism for anchoring, navigating, and rotating the insertable camera capsule by externally generated rotational magnetic field from the control unit. The motor‐free camera capsule is encapsulated in an one‐piece housing with two ring‐shaped tail‐end magnets and one cylindrical central magnet. The control unit that positioned externally consists of both permanent magnets and electromagnetic coils to generate rotational magnetic field and control the camera capsule.

    Results

    The experimental investigations indicated that the camera control system can achieve less than 1° control accuracies with average errors 0.594° and 0.524° for tilt motion and pan motion, respectively.

    Conclusion

    The designed control system provides fine orientation control for the insertable camera capsule which guarantees proper vision for the surgeon during single incision laparoscopic surgery.

     
    more » « less
  5. Advancements in robot-assisted surgery have been rapidly growing since two decades ago. More recently, the automation of robotic surgical tasks has become the focus of research. In this area, the detection and tracking of a surgical tool are crucial for an autonomous system to plan and perform a procedure. For example, knowing the position and posture of a needle is a prerequisite for an automatic suturing system to grasp it and perform suturing tasks. In this paper, we proposed a novel method, based on Deep Learning and Point-to-point Registration, to track the 6 degrees of freedom (DOF) pose of a metal suture needle from a robotic endoscope (an Endoscopic Camera Manipulator from the da Vinci Robotic Surgical Systems), without the help of any marker. The proposed approach was implemented and evaluated in a standard simulated surgical environment provided by the 2021–2022 AccelNet Surgical Robotics Challenge, thus demonstrates the potential to be translated into a real-world scenario. A customized dataset containing 836 images collected from the simulated scene with ground truth of poses and key points information was constructed to train the neural network model. The best pipeline achieved an average position error of 1.76 mm while the average orientation error is 8.55 degrees, and it can run up to 10 Hz on a PC. 
    more » « less