skip to main content


Title: ddPCR applied on archived Continuous Plankton Recorder samples reveals long-term occurrence of class 1 integrons and a sulphonamide resistance gene in marine plankton communities: Antibiotic resistance in long-term CPR samples
Award ID(s):
1657887
NSF-PAR ID:
10087597
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Environmental Microbiology Reports
Volume:
10
Issue:
4
ISSN:
1758-2229
Page Range / eLocation ID:
458 to 464
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Diatoms generate nearly half of marine primary production and are comprised of a diverse array of species that are often morphologically cryptic or difficult to identify using light microscopy. Here, species composition and realized thermal niches of species in the diatom genus Thalassiosira were examined at the site of the Narragansett Bay (NBay) Long-Term Plankton Time Series using a combination of light microscopy (LM), high-throughput sequencing (HTS) of the 18S rDNA V4 region and historical records. Thalassiosira species were identified over 6 years using a combination of LM and DNA sequences. Sixteen Thalassiosira taxa were identified using HTS: nine were newly identified in NBay. Several newly identified species have small cell diameters and are difficult to identify using LM. However, they appeared frequently and thus may play a significant ecological role in NBay, particularly since their realized niches suggest they are eurythermal and able to tolerate the >25 °C temperature range of NBay. Four distinct species assemblages that grouped by season were best explained by surface water temperature. When compared to historical records, we found that the cold-water species Thalassiosira nordenskioeldii has decreased in persistence over time, suggesting that increasing surface water temperature has influenced the ecology of phytoplankton in NBay. 
    more » « less
  2. Abstract Climate change adaptation requires building agricultural system resilience to warmer, drier climates. Increasing temporal plant diversity through crop rotation diversification increases yields of some crops under drought, but its potential to enhance crop drought resistance and the underlying mechanisms remain unclear. We conducted a drought manipulation experiment using rainout shelters embedded within a 36-year crop rotation diversity and no-till experiment in a temperate climate and measured a suite of soil and crop developmental and eco-physiological traits in the field and laboratory. We show that diversifying maize-soybean rotations with small grain cereals and cover crops mitigated maize water stress at the leaf and canopy scales and reduced yield losses to drought by 17.1 ± 6.1%, while no-till did not affect maize drought resistance. Path analysis showed a strong correlation between soil organic matter and lower maize water stress despite no significant differences in soil organic matter between rotations or tillage treatments. This positive relationship between soil organic matter and maize water status was not mediated by higher soil water retention or infiltration as often hypothesized, nor differential depth of root water uptake as measured with stable isotopes, suggesting that other mechanisms are at play. Crop rotation diversification is an underappreciated drought management tool to adapt crop production to climate change through managing for soil organic matter. 
    more » « less